共查询到20条相似文献,搜索用时 84 毫秒
1.
钾基CO2吸收剂的碳酸化反应特性 总被引:8,自引:2,他引:6
对钾基CO2吸收剂的碳酸化反应机理进行研究.利用热重分析、XRD、扫描电镜和氮吸附仪进行试验.结果表明:分析纯碳酸钾的组分为K2CO3·1.5H2O,碳酸化反应速率缓慢;先将分析纯碳酸钾样品脱除结晶水后再进行碳酸化反应时,K2CO3与气氛中的水蒸气迅速生成K2CO3·1.5H2O,不利于碳酸化反应的进行;由KHCO3分解产生的K2CO3却表现出优越的碳酸化反应性能,20 min内转化率高达85%以上,经过多次循环试验后吸收剂仍保持很高的活性.从微观角度分析了两种改性钾基CO2吸收剂碳酸化反应机理差异的原因,通过拟合计算得到了这3种钾基吸收剂的碳酸化反应速率常数,为干法K2CO3/KHCO3循环脱除CO2的研究提供了一定的基础数据. 相似文献
2.
利用热重分析仪、扫描电镜和氮吸附仪对不同粒径的K2CO3颗粒和负载型K2CO3/Al2O3二氧化碳吸收剂的碳酸化特性进行研究。负载后的吸收剂比表面积和孔隙结构得到较大改善,使得碳酸化反应速率和转化率均提高,吸收剂碳酸化特性得到改善。纯K2CO3颗粒吸收剂的反应速率和转化率随着粒径的增加而减小,负载型吸收剂的反应速率和转化率随着粒径的增加略增大。研究了不同粒径和反应时间对K2CO3/Al2O3颗粒微观结构的影响,结果表明K2CO3/Al2O3颗粒具有较稳定的微观结构。采用负载型粒子模型对K2CO3/Al2O3吸收剂吸收CO2碳酸化过程进行研究,所建立的粒子模型计算结果与试验值吻合较好。利用建立的模型对不同CO2浓度下K2CO3/Al2O3吸收剂碳酸化反应特性进行模拟计算,模拟结果具备一定的合理性和准确性,为开展进一步研究提供了基础。 相似文献
3.
4.
5.
6.
7.
乙酸酸解石灰石造腔是一种建造地下储库同时环保地开采石灰岩制备沉淀碳酸钙的新方法。通过耦合乙酸酸解石灰石及酸解产物乙酸钙CO2碳酸化的工艺过程,研究了乙酸酸解石灰岩的表面反应动力学和乙酸钙CO2碳酸化的工艺技术条件。采用正交实验分析法,研究了CO2碳酸化反应中乙酸钙浓度、反应温度、CO2压力、反应时间对乙酸钙碳酸化反应制沉淀碳酸钙的影响,并通过正交实验确定了最优化操作条件。实验结果表明,乙酸酸解反应速率主要受乙酸浓度控制。CO2碳酸化反应在当乙酸钙溶液浓度为0.631 mol·L-1,CO2压力为5.0 MPa,温度为80℃,反应时间为50 min时CO2碳酸化效率达到最高(23.13%),生成的沉淀碳酸钙产品各项指标均符合中国国标优级要求。 相似文献
8.
利用完全煅烧后的CaO和粉煤灰(Fly Ash)为材料制备了CaO/FA吸收剂。在350~650℃温度范围内对其碳酸化反应特性进行了研究。考察了不同质量比的CaO/FA吸收剂吸收CO2的性能。利用XRD、N2吸附等表征手段对吸收剂反应前后产物进行了表征。结果表明:通过水合反应过程,吸收剂比表面积增大,孔径在5~40nm范围内属于中孔,有利于减小CO2向颗粒内部的扩散阻力。CaO/FA吸收剂CO2吸收量随温度的升高而增加。当CaO与粉煤灰的质量比为3:1时制备的吸收剂具有最好的CO2吸收能力,在650℃时其最大CO2吸收量达到了227.13mg/g。通过多次循环试验后,吸附剂仍保持较高的CO2吸收量与稳定吸收性能。失活模型可以很好地预测CaO/FA吸收剂吸收CO2的过程,并得到了理想的吸收速率常数和失活速率常数。 相似文献
9.
煤焦CO2气化反应动力学研究 总被引:2,自引:0,他引:2
在热天平实验装置上进行了霍林河、义马、兖州、平朔、神华、大同6种煤焦的CO2气化反应性实验,实验温度为900~1050℃。通过对实验数据处理,取得了6种煤焦的反应动力学参数等,利用不同的参数对煤焦CO2气化的反应活性进行了比较。 相似文献
10.
采用CO2碳化法制备了微米级球霰石型食品级碳酸钙,探讨了碳化温度、Ca2+浓度、混合气中CO2浓度等制备工艺参数对碳酸钙晶型和形貌的影响,探讨了氨水用量、碳化时间对碳酸钙产率的影响,并采用FT-IR、XRD和SEM对制备的碳酸钙进行了表征。结果表明,碳化温度升高、混合气中CO2浓度降低,制备的碳酸钙晶型由球霰石型转变为方解石型;Ca2+浓度增加,制备的碳酸钙颗粒尺寸增大,碳化时间增加,产率先增加后减小。最佳制备条件为碳化温度20℃,Ca2+浓度0.3 mol/L,混合气中CO2浓度30%,[氨水]/2[Ca2+]摩尔比为1.1,碳化时间为24 min,制备的微米级球霰石型碳酸钙颗粒分布均匀,平均粒径为3.79μm,产率>99%,重金属含量低于国家标准《食品添加剂GB1898-2007轻质碳酸钙》的要求。 相似文献
11.
以氯化钙为钙源,硝酸锌为添加剂,与二氧化碳鼓泡碳化反应制备碳酸钙,探究了各因素对鼓泡碳化法制备碳酸钙的影响,运用单一因素变量法对鼓泡碳化法做了优化。利用XRD,SEM研究了氨水含量、CO2流量、碳化温度、碳化时间、硝酸锌添加量对碳酸钙形貌、结构的影响及机制。结果表明,当氨水体积分数为2.4%、CO2流量为180 mL/min、碳化时间为30 min、碳化温度为30 ℃、硝酸锌添加量为0.002 mol时,可制得形貌为球形,且为单一晶型、结晶完善的碳酸钙颗粒。并设计了正反滴实验,验证并完整提出了CaCl2-CO2-CaCO3体系中碳化反应作用机理。 相似文献
12.
13.
高纯度二氧化碳生产超细碳酸钙的碳化机理 总被引:3,自引:1,他引:3
以连续鼓泡碳化法为研究对象,以高纯度CO2为碳化气,用双膜理论探讨了生产超细碳酸钙的碳化反应机理,为实际生产中碳化反应速率与产品粒径大小实行分级控制、防止包裹返碱现象的发生、优化工艺参数提供了理论依据。该结论虽来源于连续鼓泡碳化法,但对其它生产方法也具有一定的参考价值。 相似文献
14.
为了回收联碱厂碳化塔洗水中的CO32--、HCO3-,减少污染物排放,采用复分解法,以碳化塔洗水为原料与饱和氢氧化钙溶液反应制备轻质碳酸钙.通过正交试验和单因素试验探讨了碳化塔洗水滴加速率、反应温度、搅拌速率、添加剂对产物粒径的影响;通过SEM、XRD分析了产物形貌及性质.试验结果表明,在碳化塔洗水以3 mL/min的速率滴加、反应温度为15℃、搅拌速率为700 r/min、op-10的投加量为Ca(OH)2溶液质量分数的0.1%的最佳反应条件下,得到的产物粒径为0.3 ~ 1.0 μm,颗粒分散均匀,粒度分布较窄,晶型为四方形片块状轻质碳酸钙.以碳化塔洗水为原料与饱和氢氧化钙溶液反应制备轻质碳酸钙,为联碱厂废水的处理及资源综合利用提供了新途径. 相似文献
15.
粒径≤100 nm的纳米碳酸钙容易团聚,分散性不好,用于密封胶时具有挤出性能差、模量高等缺点,为了改进这些缺点,研究了石灰的活性度、石灰生浆氢氧化钙的粒径、碳化反应时不同的碳化率和补浆量等关键参数对立方体碳酸钙合成的影响。在石灰的活性度为330~350 mL、氢氧化钙浆料的平均粒径≤2 μm、碳化率达30%~65%、补浆量为原浆的20%~50%的实验条件下,制备了亚微米级碳酸钙。并通过扫描电镜、激光粒度仪对其表面形貌进行表征,发现制备的碳酸钙呈立方体、粒径分布为100~400 nm、比表面积为10~15 m2/g。将其应用于硅烷改性聚醚(MS)密封胶,具有挤出性大、强度高、伸长率高、模量低的优点,符合GB 14683—2017《硅酮和改性硅酮建筑密封胶》中低模量密封胶的标准。 相似文献
16.
制糖行业是涉及国计民生的重要行业。污染排放已成为影响中国甘蔗制糖业生存与可持续发展的瓶颈问题。采用现代先进的FBRM、SEM、IR和XRD等仪器,观察和分析研究葡聚糖相对分子质量对模拟烟道气饱充蔗糖钙生成的碳酸钙的影响:随着葡聚糖相对分子质量的增加,碳酸钙颗粒形状从分叉钟乳石状变为不规则状;碳酸钙颗粒的弦长范围和不加权中位数弦长,都随着葡聚糖相对分子质量的增大而减小;葡聚糖不引起方解石型碳酸钙晶格的变化。研究结果可为实现制糖产业的绿色加工和节能减排提供理论和技术依据。 相似文献
17.
电石渣制备纳米碳酸钙的研究 总被引:9,自引:0,他引:9
电石渣与氯化铵、水按一定的比例混合,过滤后得到澄清的浸取液,再利用液-液连续碳化法制备纳米碳酸钙。实验结果表明,该工艺所制备碳酸钙的晶型为立方体、平均粒径40~50nm。此种规格的碳酸钙在涂料、塑料行业有广泛的应用前景。 相似文献
18.
结合中国现有的鼓泡碳化、喷雾碳化以及超重力反应的特点,研制并设计出一套鼓泡和喷雾碳化相结合的新型碳化工艺技术,生产出粒径分布在40~60nm,且结晶规整、分散良好的纳米级碳酸钙产品。 相似文献
19.
采用碳化法,使用氯化镁和氢氧化钠复合添加剂,制备含文石相的沉淀碳酸钙。采用X射线衍射(XRD)、透射电镜(TEM)对产物的晶型和形貌进行表征。讨论了氢氧化钠添加比例、氢氧化钙浓度以及碳化反应温度等工艺条件对实验结果的影响,并分析了过程的反应机理。结果表明:产物中的文石相来自于碳酸钙在氢氧化镁沉淀上的异相成核和生长,方解石相来自于碳酸钙在溶液中的均相成核和生长;氢氧化钠的加入降低了溶液中碳酸钙的过饱和度,抑制了均相成核过程,降低了氯化镁的添加比例。在碳化反应温度为30 ℃、氢氧化钙浓度为1.7~
2.0 mol/L、氢氧化钠与氯化镁物质的量比为2.6条件下,对文石型碳酸钙的生成较为有利。 相似文献
20.
生产球形纳米碳酸钙新型碳化反应器开发研究 总被引:2,自引:0,他引:2
已经工业化的纳米碳酸钙生产方法所生产的产品多为立方形和纺锤形,目前还没有生产球形纳米碳酸钙的工业方法。给出了一种生产球形纳米碳酸钙的喷射一乳化新型组合式碳化反应器,并进行了小试和中试实验研究。在小型实验装置上,采用正交试验的方法,确定出粒度分布窄的球形纳米碳酸钙的最佳反应条件为:温度15℃,氢氧化钙浆液质量浓度65g/L,气液体积比5:1。在完成小试的基础上,建成了年产60t纳米碳酸钙的中试实验装置,并成功制备出平均粒径80nm球形纳米碳酸钙。 相似文献