首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methanobactin (Mb) is a copper-binding peptide that appears to function as an agent for copper sequestration and uptake in methanotrophs. Mb can also bind and reduce Au(III) to Au(0). In this paper, Au/Al2O3 catalysts prepared by a novel incipient wetness-Mb-mediated bioreduction method were used for glucose oxidation. The catalysts were characterized, and the analysis revealed that very small gold nanoparticles with a particle size <4 nm were prepared by the incipient wetness-Mb-mediated bioreduction method, even at 1.0% Au loading (w/w). The influence of Au loading, calcination temperature and calcination time on the specific activity of Au/Al2O3 catalysts was systematically investigated. Experimental results showed that decomposing the Mb molecules properly by calcinations can enhance the specific activity of Au/Al2O3 catalysts, though they acted as reductant and protective agents during the catalyst preparation. Au/Al2O3 catalysts synthesized by the method exhibited optimum specific activity under operational synthesis conditions of Au loading of 1.0 wt % and calcined at 450 °C for 2 h. The catalysts were reused eight times, without a significant decrease in specific activity. To our knowledge, this is the first attempt at the preparation of Au/Al2O3 catalysts by Mb-mediated in situ synthesis of gold nanoparticles.  相似文献   

2.
Au/Al2O3 · xH2O and Au/TiO2/Al2O3 · xH2O (x = 0–3) catalysts were prepared by assembling gold nanoparticles on neat and TiO2-modified Al2O3, AlOOH, and Al(OH)3 supports, and their catalytic activity in CO oxidation was tested either as synthesized or after on-line pretreatment in O2–He at 500 °C. A promotional effect of TiO2 on the activity of gold catalysts was observed upon 500 °C-pretreatment. The catalyst stability as a function of time on stream was tested in the absence or presence of H2, and physiochemical characterization applying BET, ICP-OES, XRD, TEM, and 27Al MAS NMR was conducted.  相似文献   

3.
This paper presents some important results of the studies on preparation and catalytic properties of nanodispersed Au/Al2O3 catalysts for low-temperature CO oxidation, which are carried out at the Boreskov Institute of Catalysis (BIC) starting from 2001. The catalysts with a gold loading of 1–2 wt.% were prepared via deposition of Au complexes onto different aluminas by means of various techniques (“deposition-precipitation” (DP), incipient wetness, “chemical liquid-phase grafting” (CLPG), chemical vapor deposition (CVD)). These catalysts have been characterized comparatively by a number of physical methods (XRD, TEM, diffuse reflectance UV/vis and XPS) and catalytically tested for combustion of CO impurity (1%) in wet air stream at near-ambient temperature. Using the hydroxide or chloride gold complexes capable of chemical interaction with the surface groups of alumina as the catalyst precursors (DP and incipient wetness techniques, respectively) produces the catalysts that contain metallic Au particles mainly of 2–4 nm in diameter, uniformly distributed between the external and internal surfaces of the support granules together with the surface “ionic” Au oxide species. Application of organogold precursors gives the supported Au catalysts of egg shell type which are either close by mean Au particle size to what we obtain by DP and incipient wetness techniques (CVD of (CH3)2Au(acac) vapor on highly dehydrated Al2O3 in a rotating reactor under static conditions) or contain Au crystallites of no less than 7 nm in size (CLPG method). Regardless of deposition technique, only the Cl-free Au/Al2O3 catalysts containing the small Au particles (di ≤ 5 nm) reveal the high catalytic activity toward CO oxidation under near-ambient conditions, the catalyst stability being provided by adding the water vapor into the reaction feed. The results of testing of the nanodispersed Au/Al2O3 catalysts under conditions which simulate in part removal of CO from ambient air or diesel exhaust are discussed in comparison with the data obtained for the commercial Pd and Pt catalysts under the same conditions.  相似文献   

4.
By simulating CO and H2 oxidations at thermodynamic equilibrium and studying the catalytic oxidations over Au/TiO2, preferential oxidation of CO in a H2 rich stream (PROX) was investigated. During the simulation, at least two cases under different gaseous feeds, H2/CO/O2/N2 = 50/1/0.5/48.5 or 50/1/1/48 (vol.%) were examined under the assumption of an ideal gas and one atmosphere pressure in the reactor. It was found that the addition of 1% O2 (the latter case) effectively reduced CO concentration to less than 100 ppm in the temperature range between 0 and 90 °C. This range narrowed to between 0 and 50 °C with the addition of 3% H2O and 15% CO2 in the feed. The thermodynamic study suggests that 1% CO in a H2 rich system can be decreased to below 100 ppm within those low temperature ranges, if there is no substantial adsorptions onto the catalyst surface and the reactions rapidly reach equilibrium. During the catalysis reaction study, a well-pH adjusted Au/TiO2 catalyst was found very active for PROX. CO conversions at the reactor outlet were close to those at equilibrium. Au/TiO2 used in this work was prepared via deposition-precipitation (DP) method. The influence of gold colloid pH (at 6) adjustment time on gold loading, gold particle size and chloride residue on TiO2 surface was detected by atomic absorption (AA), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). A pH adjustment time of at least 6 h for the preparation of gold colloids at room temperature was demonstrated to be essential for the high catalytic activity of Au/TiO2. This was attributed to the smaller gold particle and the less chloride residue on the catalyst surface.  相似文献   

5.
Catalytic activity of a 1 wt% Au/TiO2 catalyst is markedly improved by loading a large amount of FeOx, on which the oxidation of CO in excess H2 is selectively promoted at temperature lower than 60 °C. Oxidation of CO with O2 on the FeOx/Au/TiO2 catalyst is markedly enhanced by H2, and H2O moisture also enhances the oxidation of CO but its effect is not so large as the promotion by H2. We deduced that activation of Au/TiO2 catalyst by loading FeOx is not caused by the size effect of Au particles but a new reaction path via hydroxyl carbonyl intermediate is responsible for the superior activity of the FeOx/Au/TiO2 catalyst.  相似文献   

6.
In this work, the effect of promoter type (Mg, Mn, Ce, Co, Fe and Ni) on selective CO oxidation performance of Au/γ-Al2O3 was studied with the realistic feed stream containing CO2 and H2O. The effects of Au loading, promoter loading, reaction temperature and the feed composition were also investigated. It was found that MgO was the best promoter in the presence of CO2 and H2O, and 1.25 wt.% Mg was sufficient for promotion. The CO conversion decreased with the addition of CO2 while the presence of H2O had some positive effects.  相似文献   

7.
After a high-temperature reduction (HTR) at 773 K, TiO2-supported Au became very active for CO oxidation at 313 K and was an order of magnitude more active than SiO2-supported Au, whereas a low-temperature reduction (LTR) at 473 K produced a Au/TiO2 catalyst with very low activity. A HTR step followed by calcination at 673 K and a LTR step gave the most active Au/TiO2 catalyst of all, which was 100-fold more active at 313 K than a typical 2% Pd/Al2O3 catalyst and was stable above 400 K whereas a sharp decrease in activity occurred with the other Au/TiO2 (HTR) sample. With a feed of 5% CO, 5% O2 in He, almost 40% of the CO was converted at 313 K and essentially all the CO was oxidized at 413 K over the best Au/TiO2 catalyst at a space velocity of 333 h–1 based on CO + O2. Half the chloride in the Au precursor was retained in the Au/TiO2 (LTR) sample whereas only 16% was retained in the other three catalysts; this may be one reason for the low activity of the Au/TiO2 (LTR) sample. The reaction order on O2 was approximately 0.4 between 310 and 360 K, while that on CO varied from 0.2 to 0.6. The chemistry associated with this high activity is not yet known but is presently attributed to a synergistic interaction between gold and titania.  相似文献   

8.
CO impedes the low temperature (<170 °C) oxidation of C3H6 on supported Pt. Supported Au catalysts are very effective in the removal of CO by oxidation, although it has little propene oxidation activity under these conditions. Addition of Au/TiO2 to Pt/Al2O3 either as a physical mixture or as a pre-catalyst removes the CO and lowers the light-off temperature (T 50) for C3H6 oxidation compared with Pt catalyst alone by ~54 °C in a feed of 1% CO, 400 ppm C3H6, 14% O2, 2% H2O.  相似文献   

9.
We review here our studies of the reactivity and sintering kinetics of model catalysts consisting of gold nanoparticles dispersed on TiO2(110). First, the nucleation and growth of vapor-deposited gold on this surface was experimentally examined using x-ray photoelectron spectroscopy and low energy ion scattering. Gold initially grows as two-dimensional islands up to a critical coverage, θ cr, after which 3D gold nanoparticles grow. The results at different temperatures are fitted well with a kinetic model, which includes various energetic parameters for Au adatom migration. Oxygen was dosed onto the resulting gold nanoparticles using a hot filament technique. The desorption energy of Oa was examined using temperature programmed desorption (TPD). The Oa is bonded ~40% more strongly to smaller (thinner) Au islands. Gaseous CO reacts rapidly with this Oa to make CO2, probably via adsorbed CO. The reactivity of Oa with CO increases with increasing particle size, as expected based on Br?nsted relations. Propene adsorption leads to TPD peaks for three different molecularly adsorbed states on Au/TiO2(110), corresponding to propene adsorbed on gold islands, to Ti sites on the substrate, and to the perimeter of gold islands, with adsorption energies of 40, 52 and 73 kJ/mol, respectively. Thermal sintering of the gold nanoparticles was explored using temperature-programmed low-energy ion scattering. These sintering rates for a range of Au loadings at temperatures from 200 to 700 K were well fitted by a theoretical model which takes into consideration the dramatic effect of particle size on metal chemical potential using a modified bond additivity model. When extrapolated to simulate isothermal sintering at 700 K for 1 year, the resulting particle size distribution becomes very narrow. These results question claims that the shape of particle size distributions reveal their sintering mechanisms. They also suggest why the growth of colloidal nanoparticles in liquid solutions can result in very narrow particle size distributions.  相似文献   

10.
This paper describes the selective oxidation of ammonia into nitrogen over copper, silver and gold catalysts between room temperature and 400 °C using different NH3/O2 ratios. The effect of addition of CeOx and Li2O on the activity and selectivity is also discussed. The results show that copper and silver are very active and selective toward N2. However the multicomponent catalysts: M/Li2O/CeOx/Al2O3 (M: Au, Ag, Cu) perform the best. On all three metal containing catalysts the activity and selectivity is influenced by the particle size and the interaction between metal particles and support.  相似文献   

11.
Titania-supported gold catalysts are extremely active for room temperature CO oxidation; however, deactivation is observed over long periods of time under our reaction conditions Impregnated AuTiO2 is most active after a sequential pretreatment consisting of high temperature reduction at 773 K, calcination at 673 K and low temperature reduction at 473 K (HTR/C/LTR); the activity after either only low temperature reduction or calcination is much lower. A catalyst prepared by coprecipitation had much smaller Au particles than impregnated AuTiO2 and was active at 273 K after either an HTR/C/LTR or a calcination pretreatment. Deposition of TiOx overlayers onto an inactive Au powder produced high activity; this argues against an electronic effect in small Au particles as the major factor contributing to the activity of AuTiO2 catalysts and argues for the formation of active sites at the AuTiOx interface produced by the mobility of TiOx species. DRIFTS (diffuse reflectance FTIR) spectra of impregnated AuTiO2 reveal the presence of weak reversible CO adsorption on the Au surface but not on the TiO2; however, a band for adsorbed CO is observed on the pure TiO2. Kinetic studies with a 1.0 wt.-% impregnated AuTiO2 sample showed a near half-order rate dependence on CO and a near zero-order rate dependence on O2 between 273 and 313 K with an activation energy near 7 kcal/mol. A two-site model, with CO adsorbing on Au and O2 adsorbing on TiO2, is consistent with Langmuir-Hinselwood kinetics for noncompetitive adsorption, fits partial pressure data well and shows consistent enthalpies and entropies of adsorption. The formation of carbonate and car☐ylate species on the titania surface was detected but it appears that these are spectator species. DRIFTS experiments under reaction conditions also show the presence of weak, reversible adsorption of CO2 (near 2340 cm−1) which may be competing with CO for adsorption sites.  相似文献   

12.
A comparative study of the catalytic performance and long-term stability of various metal oxide supported gold catalysts during preferential CO oxidation at 80°C in a H2-containing atmosphere (PROX) reveals significant support effects. Compared to Au/-Al2O3, where the support is believed to behave neutrally in the reaction process, catalysts supported on reducible transition metal oxides, such as Fe2O3, CeO2, or TiO2, exhibit a CO oxidation activity of up to one magnitude higher at comparable gold particle sizes. The selectivity is also found to strongly depend on the employed metal oxide, amounting, e.g., up to 75% for Au/Co3O4 and down to 35% over Au/SnO2. The deactivation, which is observed for all samples with increasing time on stream, except for Au/-Al2O3, is related to the build-up of surface carbonate species. The long-term stability of the investigated catalysts in simulated methanol reformate depends crucially on the ability to form such by-products, with magnesia and Co3O4 supported catalysts being most negatively affected. Overall, Au/CeO2 and, in particular, Au/-Fe2O3 represent the best compromise under the applied reaction conditions, especially due to the superior activity and the easily reversible deactivation of the latter catalyst.  相似文献   

13.
Both the conversion and H2O2 selectivity (or yield) in direct oxidation of H2-to-H2O2 (using 1.7 mol% H2 in O2 as a feed) and also the H2O2 decomposition over zeolite (viz. H-ZSM-5, H-GaAlMFI and H- ) supported palladium catalysts (at 22 °C and atmospheric pressure) are strongly influenced by the zeolite support and its fluorination, the reaction medium (viz. pure water, 0.016 M or 1.0 M NaCl solution or 0.016 M H2SO4, HCl, HNO3, H3PO4 and HClO4), and also by the form of palladium (Pd0 or PdO). The oxidized (PdO-containing) catalysts are active for the H2-to-H2O2 conversion and show very poor activity for the H2O2 decomposition. However, the reduced (Pd0-containing) catalysts show higher H2 conversion activity but with no selectivity for H2O2, and also show much higher H2O2 decomposition activity. No direct correlation is observed between the H2-to-H2O2 conversion activity (or H2O2 selectivity) and the Pd dispersion or surface acidity of the catalysts. Higher H2O2 yield and lower H2O2 decomposition activity are, however, obtained when the non-acidic reaction medium (water with or without NaCl) is replaced by the acidic one.  相似文献   

14.
A series of Pt/Al2O3 catalysts were prepared by the impregnation method and were characterized by TEM, XRD, H2 and CO chemisorptions, and investigated in the hydrodechlorination of tetrachloromethane. Three Pt-rich, Pt–Au/Al2O3 catalysts (Pt100, Pt95Au5 and Pt90Au10) showed a similar metal particle size (~2.5–2.7 nm), so observed changes in the catalytic behavior are ascribed to alloying effect, especially because a considerable degree of Pt–Au mixing was achieved in the bimetallic samples. It appeared that by introducing very small amount of gold (10 at.%) to platinum, the catalytic activity is increased. It is argued that the occurrence of this moderate synergistic effect is associated with a decreased tendency of surface chloriding when platinum is alloyed with gold. Zbigniew Kowalczyk—deceased.  相似文献   

15.
A number of nano-gold catalysts were prepared by depositing gold on different metal oxides (viz. Fe2O3, Al2O3, Co3O4, MnO2, CeO2, MgO, Ga2O3 and TiO2), using the homogeneous deposition precipitation (HDP) technique. The catalysts were evaluated for their performance in the combustion of methane (1 mol% in air) at different temperatures (300–600 °C) for a GHSV of 51,000 h−1. The supported nano-gold catalysts have been characterized for their gold loading (by ICP) and gold particle size (by TEM/HRTEM or XRD peak broadening). Among these nano-gold catalysts, the Au/Fe2O3 (Au loading = 6.1% and Au particle size = 8.5 nm) showed excellent performance. For this catalyst, temperature required for half the methane combustion was 387 °C, which is lower than that required for Pd(1%)/Al2O3 (400 °C) and Pt(1%)/Al2O3 (500 °C) under identical conditions. A detailed investigation on the influence of space velocity (GHSV = 10,000–100,000 cm3 g−1 h−1) at different temperatures (200–600 °C) on the oxidative destruction of methane over the Au/Fe2O3 catalyst has also been carried out. The Au/Fe2O3 catalyst prepared by the HDP method showed much higher methane combustion activity than that prepared by the conventional deposition precipitation (DP) method. The XPS analysis showed the presence of Au in the different oxidation states (Au0, Au1+ and Au3+) in the catalyst.  相似文献   

16.
Titania-supported Au catalysts were given both low temperature reduction and high temperature reduction at 473 and 773 K, respectively, and their adsorption and catalytic properties were compared to identically pretreated Pt/TiO2 catalysts and pure TiO2 samples as well as Au/SiO2 catalysts. This was done to determine whether a reaction model proposed for methanol synthesis over metals dispersed on Zn, Sr and Th oxides could also explain the high activities observed in hydrogenation reactions over MSI (Metal-Support Interaction) catalysts such as Pt/TiO2. This model invokes O vacancies on the oxide support surface, formed by electron transfer from the oxide to the metal across Schottky junctions established at the metal-support interface, as the active sites in this reaction. The similar work functions of Pt and Au should establish similar vacancy concentrations, and O2 chemisorption indicated their presence. However, these Au catalysts were completely inactive for CO and acetone hydrogenation, and ethylene hydrogenation rates were lower on the supported Au catalysts than on the supports alone. Consequently, this model cannot explain the high rate of the two former reactions over TiO2-supported Pt although it does not contradict models invoking specialinterfacial sites.  相似文献   

17.
CO oxidation over Au/TiO2 prepared from metal-organic gold complexes   总被引:1,自引:0,他引:1  
A series of Au/TiO2 catalysts has been prepared from precursors of various metal-organic gold complexes (Au n , n = 2–4) and their catalytic activity for CO oxidation studied. The Au/TiO2 catalyst synthesized from a tetranuclear gold complex shows the best performance for CO oxidation with transmission electron microscopy of this catalyst indicating an average gold particle size of 3.1 nm.  相似文献   

18.
TiO2-supported manganese oxide catalysts were prepared from two different precursors, manganese nitrate (MN) and manganese acetate (MA), and these samples were characterized by BET, XRD, TG/DTA, XPS and FT–IR. The characterization results showed that the MN precursor resulted primarily in MnO2, accompanied with some Mn-nitrate, while the MA precursor caused mainly Mn2O3 species. These two different precursors also led to different surface Mn atom concentrations indicated by XPS and NH3 adsorption. Consequently, the higher low-temperature activity of MnOx/TiO2 from MA precursor was attributed to higher surface Mn concentration and the surface Mn2O3 species.  相似文献   

19.
Oxidative Desulfurization of Model Oil over Au/Ti-MWW   总被引:1,自引:0,他引:1  
Au/Ti-MWW catalysts were prepared by the impregnation of HAuCl4 on Ti-MWW. Its structure and properties were characterized by X-ray diffraction, N2 adsorption and UV-visible. The oxidation reactions of thiophene (TH), benzothiophene (BT), dibenzothiophene (DBT) and 4,6-dimethyl-dibenzothiophene (DMDBT) were investigated at mild reaction conditions using H2O2 as oxidant. The results showed that Au loading could significantly promote the activity of Ti-MWW for oxidative desulfurization.  相似文献   

20.
Au/CeO2 catalysts prepared by co-precipitation (CP) and deposition-precipitation (DP) methods were tested for low temperature CO oxidation reaction. The structural characters and redox features of the catalysts were investigated by XRD, XPS and H2-TPR. Their catalytic performances for low temperature CO oxidation were studied by means of a microreactor -GC system. It showed that the catalytic activities of Au/CeO2 catalysts greatly depended on the preparation method. The catalysts prepared by DP method exhibited a surprisingly higher activity towards CO oxidation than that prepared by CP method. This may arise from the differences in the particle sizes of Au and redox properties of the catalysts. The low Au loading and the resistance to high temperature of DP-prepared catalyst made it more applicable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号