首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A close connection between inflammation and the risk of developing colon cancer has been suggested in the last few years. It has been estimated that patients diagnosed with some types of inflammatory bowel disease, such as ulcerative colitis or Crohn’s disease, have up to a 30% increased risk of developing colon cancer. However, there is also evidence showing that the activation of anti-inflammatory pathways, such as the IL-4 receptor-mediated pathway, may favor the development of colon tumors. Using an experimental model of colitis-associated colon cancer (CAC), we found that the decrease in tumor development in global IL4Rα knockout mice (IL4RαKO) was apparently associated with an inflammatory response mediated by the infiltration of M1 macrophages (F480+TLR2+STAT1+) and iNOS expression in colon tissue. However, when we developed mice with a specific deletion of IL4Rα in macrophages (LysMcreIL4Rα−/lox mice) and subjected them to CAC, it was found that despite presenting a large infiltration of M1 macrophages into the colon, these mice were as susceptible to colon-tumorigenesis as WT mice. These data suggest that in the tumor microenvironment the absence of IL4Rα expression on macrophages, as well as the recruitment of M1 macrophages, may not be directly associated with resistance to developing colon tumors. Therefore, it is possible that IL4Rα expression in other cell types, such as colonic epithelial cells, could have an important role in promoting the development of colitis-associated colon tumorigenesis.  相似文献   

2.
Inflammatory bowel disease is characterized by the infiltration of immune cells and chronic inflammation. The immune inhibitory receptor, CD200R, is involved in the downregulation of the activation of immune cells to prevent excessive inflammation. We aimed to define the role of CD200R ligand-CD200 in the experimental model of intestinal inflammation in conventionally-reared mice. Mice were given a dextran sodium sulfate solution in drinking water. Bodyweight loss was monitored daily and the disease activity index was calculated, and a histological evaluation of the colon was performed. TNF-α production was measured in the culture of small fragments of the distal colon or bone marrow-derived macrophages (BMDMs) cocultured with CD200+ cells. We found that Cd200−/− mice displayed diminished severity of colitis when compared to WT mice. Inflammation significantly diminished CD200 expression in WT mice, particularly on vascular endothelial cells and immune cells. The co-culture of BMDMs with CD200+ cells inhibited TNF-α secretion. In vivo, acute colitis induced by DSS significantly increased TNF-α secretion in colon tissue in comparison to untreated controls. However, Cd200−/− mice secreted a similar level of TNF-α to WT mice in vivo. CD200 regulates the severity of DSS-induced colitis in conventionally-reared mice. The presence of CD200+ cells decreases TNF-α production by macrophages in vitro. However, during DDS-induced intestinal inflammation secretion of TNF-α is independent of CD200 expression.  相似文献   

3.
Transforming growth factor (TGF)-β1, a cytokine that can be expressed in the brain, is a key regulator of the brain’s responses to injury and inflammation. Alzheimer’s disease (AD), the most common neurodegenerative disorder, involves inflammatory processes in the brain in addition to the hallmarks, amyloid-β (Aβ) plaques and neurofibrillary tangles. Recently, we have shown that T-helper (Th) 17 cells, a subpopulation of CD4+ T-cells with high proinflammation, also participate in the brain inflammatory process of AD. However, it is poorly known whether TGF-β1 ameliorates the lymphocyte-mediated neuroinflammation and, thereby, alleviates neurodegeneration in AD. Herein, we administered TGF-β1 via the intracerebroventricle (ICV) in AD model rats, by Aβ1–42 injection in both sides of the hippocampus, to show the neuroprotection of TGF-β1. The TGF-β1 administration after the Aβ1–42 injection ameliorated cognitive deficit and neuronal loss and apoptosis, reduced amyloid precursor protein (APP) expression, elevated protein phosphatase (PP)2A expression, attenuated glial activation and alleviated the imbalance of the pro-inflammatory/anti-inflammatory responses of T-lymphocytes, compared to the Aβ1–42 injection alone. These findings demonstrate that TGF-β1 provides protection against AD neurodegeneration and suggest that the TGF-β1 neuroprotection is implemented by the alleviation of glial and T-cell-mediated neuroinflammation.  相似文献   

4.
5.
Non-infectious uveitis (NIU) is a potentially sight-threatening disease. Effector CD4+ T cells, especially interferon-γ-(IFNγ) producing Th1 cells and interleukin-17-(IL-17) producing Th17 cells, are the major immunopathogenic cells, as demonstrated by adoptive transfer of disease in a model of experimental autoimmune uveitis (EAU). CD4+FoxP3+CD25+ regulatory T cells (Tregs) were known to suppress function of effector CD4+ T cells and contribute to resolution of disease. It has been recently reported that some CD4+ T-cell subsets demonstrate shared phenotypes with another CD4+ T-cell subset, offering the potential for dual function. For example, Th17/Th1 (co-expressing IFNγ and IL-17) cells and Th17/Treg (co-expressing IL-17 and FoxP3) cells have been identified in NIU and EAU. In this review, we have investigated the evidence as to whether these ‘plastic CD4+ T cells’ are functionally active in uveitis. We conclude that Th17/Th1 cells are generated locally, are resistant to the immunosuppressive effects of steroids, and contribute to early development of EAU. Th17/Treg cells produce IL-17, not IL-10, and act similar to Th17 cells. These cells were considered pathogenic in uveitis. Future studies are needed to better clarify their function, and in the future, these cell subsets may in need to be taken into consideration for designing treatment strategies for disease.  相似文献   

6.
7.
Cord blood T cells (CBTC) from a proportion of newborns express low/deficient levels of some protein kinase C (PKC) isozymes, with low levels of PKCζ correlating with increased risk of developing allergy and associated decrease in interferon-gamma (IFN-γ) producing T cells. Interestingly, these lower levels of PKCζ were increased/normalized by supplementing women during pregnancy with n-3 polyunsaturated fatty acids. However, at present, we have little understanding of the transient nature of the deficiency in the neonate and how PKCζ relates to other PKC isozymes and whether their levels influence maturation into IFN-γ producing T cells. There is also no information on PKCζ isozyme levels in the T cell subpopulations, CD4+ and CD8+ cells. These issues were addressed in the present study using a classical culture model of neonatal T cell maturation, initiated with phytohaemagglutinin (PHA) and recombinant human interleukin-2 (rhIL-2). Of the isozymes evaluated, PKCζ, β2, δ, μ, ε, θ and λ/ι were low in CBTCs. The PKC isozyme deficiencies were also found in the CD4+ and CD8+ T cell subset levels of the PKC isozymes correlated between the two subpopulations. Examination of changes in the PKC isozymes in these deficient cells following addition of maturation signals showed a significant increase in expression within the first few hours for PKCζ, β2 and μ, and 1–2 days for PKCδ, ε, θ and λ/ι. Only CBTC PKCζ isozyme levels correlated with cytokine production, with a positive correlation with IFN-γ, interleukin (IL)-2 and tumour necrosis factor-alpha (TNF), and a negative association with IL-9 and IL-10. The findings reinforce the specificity in using CBTC PKCζ levels as a biomarker for risk of allergy development and identify a period in which this can be potentially ‘corrected’ after birth.  相似文献   

8.
Mitochondria play vital roles, including ATP generation, regulation of cellular metabolism, and cell survival. Mitochondria contain the majority of cellular nicotinamide adenine dinucleotide (NAD+), which an essential cofactor that regulates metabolic function. A decrease in both mitochondria biogenesis and NAD+ is a characteristic of metabolic diseases, and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) orchestrates mitochondrial biogenesis and is involved in mitochondrial NAD+ pool. Here we discuss how PGC-1α is involved in the NAD+ synthesis pathway and metabolism, as well as the strategy for increasing the NAD+ pool in the metabolic disease state.  相似文献   

9.
Loss of tolerance of the adaptive immune system towards indigenous flora contributes to the development of inflammatory bowel diseases (IBD). Defects in dendritic cell (DC)-mediated innate and adoptive immune responses are conceivable. The aim of this study was to investigate the expression of the inhibitory molecules CD200R1 and their ligand CD200 on DCs, to clarify the role of the DCs in the pathogenesis of IBD. Thirty-seven pediatric IBD patients (23 with Crohn’s disease (CD) and 14 with ulcerative colitis (UC)) with mean age 13.25 ± 2.9 years were included. Fourteen age-matched healthy pediatric volunteers (five males and nine females) served as a control group (HC). The percentage of CD11c+ myeloid dendritic cells (mDCs) and CD123+ plasmacytoid DCs (pDCs) expressing CD200R1 and CD200 were evaluated in peripheral blood using flow cytometry and were correlated with routine biochemical, serological markers, serum levels of cytokines and with the percentages of circulating regulatory T cells (Treg) and CD4+ producing IL-17 (Th17). IBD patients showed a significant decrease in the percentage of pDCs and mDCs expressing CD200R1 compared to that of HC. Patients with UC showed increased expressions of the CD200 molecule on pDCs as compared to HC. DCs expressing CD200R1 were found to be correlated positively with Treg and negatively with TH17 and erythrocyte sedimentation rate (ESR). Our findings suggest that IBD is associated with dysregulation in the CD200R1/CD200 axis and that the decrease in DCs expressing CD200R1 may contribute to the imbalance of Th17 and Treg cells and in the pathogenesis of IBD.  相似文献   

10.
The cation channel TRPV2 is known to be expressed by murine macrophages and is crucially involved in their functionality. Macrophages are frequent cells of the mouse testis, an immune-privileged and steroid-producing organ. TRPV2 expression by testicular macrophages and possible changes associated with age or inflammation have not been investigated yet. Therefore, we studied testes of young adult and old wild-type (WT) and AROM+ mice, i.e., transgenic mice overexpressing aromatase. In these animals, inflammatory changes are described in the testis, involving active macrophages, which increase with age. This is associated with impaired spermatogenesis and therefore AROM+ mice are a model for male infertility associated with sterile inflammation. In WT animals, testicular TRPV2 expression was mapped to interstitial CD206+ and peritubular MHC II+ macrophages, with higher levels in CD206+ cells. Expression levels of TRPV2 and most macrophage markers did not increase significantly in old mice, with the exception of CD206. As the number of TRPV2+ testicular macrophages was relatively small, their possible involvement in testicular functions and in aging in WT mice remains to be further studied. In AROM+ testis, TRPV2 was readily detected and levels increased significantly with age, together with macrophage markers and TNF-α. TRPV2 co-localized with F4/80 in macrophages and further studies showed that TRPV2 is mainly expressed by unusual CD206+MHC II+ macrophages, arising in the testis of these animals. Rescue experiments (aromatase inhibitor treatment and crossing with ERαKO mice) restored the testicular phenotype and also abolished the elevated expression of TRPV2, macrophage and inflammation markers. This suggests that TRPV2+ macrophages of the testis are part of an inflammatory cascade initiated by an altered sex hormone balance in AROM+ mice. The changes in testis are distinct from the described alterations in other organs of AROM+, such as prostate and spleen. When we monitored TRPV2 levels in another immune-privileged organ, namely the brain, we found that levels of TRPV2 were not elevated in AROM+ and remained stable during aging. In the adrenal, which similar to the testis produces steroids, we found slight, albeit not significant increases in TRPV2 in both AROM+ and WT mice, which were associated with age. Thus, the changes in the testis are specific for this organ.  相似文献   

11.
Naїve CD4+ T cells, which suffer different polarizing signals during T cell receptor activation, are responsible for an adequate immune response. In this study, we aimed to evaluate the behavior of human CD4+CD45RA+ T cells after in vitro activation by anti-CD3/CD28 bead stimulation for 14 days. We also wanted to check the role of the VIP system during this process. The metabolic biomarker Glut1 was increased, pointing to an increase in glucose requirement whereas Hif-1α expression was higher in resting than in activated cells. Expression of Th1 markers increased at the beginning of activation, whereas Th17-associated biomarkers augmented after that, showing a pathogenic Th17 profile with a possible plasticity to Th17/1. Foxp3 mRNA expression augmented from day 4, but no parallel increases were observed in IL-10, IL-2, or TGFβ mRNA expression, meaning that these potential differentiated Treg could not be functional. Both VIP receptors were located on the plasma membrane, and expression of VPAC2 receptor increased significantly with respect to the VPAC1 receptor from day 4 of CD4+CD45RA+ T activation, pointing to a shift in VPAC receptors. VIP decreased IFNγ and IL-23R expression during the activation, suggesting a feasible modulation of Th17/1 plasticity and Th17 stabilization through both VPAC receptors. These novel results show that, without polarizing conditions, CD4+CD45RA+ T cells differentiate mainly to a pathogenic Th17 subset and an unpaired Treg subset after several days of activation. Moreover, they confirm the important immunomodulatory role of VIP, also on naїve Th cells, stressing the importance of this neuropeptide on lymphocyte responses in different pathological or non-pathological situations.  相似文献   

12.
13.
Previously, we reported a radiation-induced inflammation triggering fat-accumulation through fatty-acid-translocase/cluster of differentiation protein 36 (FAT/CD36) in rat liver. Furthermore, inhibition of radiation-induced FAT/CD36-expression by anti-tumor necrosis factor-α (anti-TNF-α) (infliximab) was shown in vitro. The current study investigates fat-accumulation in a mouse-model of single-dose liver-irradiation (25-Gray) and the effect of anti-TNF-α-therapy on FAT/CD36 gene-expression. Mice livers were selectively irradiated in vivo in presence or absence of infliximab. Serum- and hepatic-triglycerides, mRNA, and protein were analyzed by colorimetric assays, RT-PCR, Immunofluorescence and Western-Blot, respectively. Sudan-staining was used demonstrating fat-accumulation in tissue. In mice livers, early (1–3 h) induction of TNF-α-expression, a pro-inflammatory cytokine, was observed. It was followed by elevated hepatic-triglyceride level (6–12 h), compared to sham-irradiated controls. In contrast, serum-triglyceride level was decreased at these time points. Similar to triglyceride level in mice livers, Sudan staining of liver cryosections showed a quick (6–12 h) increase of fat-droplets after irradiation. Furthermore, expression of fat-transporter-protein FAT/CD36 was increased at protein level caused by radiation or TNF-α. TNF-α-blockage by anti-TNF-α showed an early inhibition of radiation-induced FAT/CD36 expression in mice livers. Immunohistochemistry showed basolateral and cytoplasmic expression of FAT/CD36 in hepatocytes. Moreover, co-localization of FAT/CD36 was detected with α-smooth muscle actin (α-SMA+) cells and F4/80+ macrophages. In summary, hepatic-radiation triggers fat-accumulation in mice livers, involving acute-phase-processes. Accordingly, anti-TNF-α-therapy prevented early radiation-induced expression of FAT/CD36 in vivo.  相似文献   

14.
Intracellular free zinc ([Zn2+]i) is mobilized in neuronal and non-neuronal cells under physiological and/or pathophysiological conditions; therefore, [Zn2+]i is a component of cellular signal transduction in biological systems. Although several transporters and ion channels that carry Zn2+ have been identified, proteins that are involved in Zn2+ supply into cells and their expression are poorly understood, particularly under inflammatory conditions. Here, we show that the expression of Zn2+ transporters ZIP8 and ZIP14 is increased via the activation of hypoxia-induced factor 1α (HIF-1α) in inflammation, leading to [Zn2+]i accumulation, which intrinsically activates transient receptor potential ankyrin 1 (TRPA1) channel and elevates basal [Zn2+]i. In human fibroblast-like synoviocytes (FLSs), treatment with inflammatory mediators, such as tumor necrosis factor-α (TNF-α) and interleukin-1α (IL-1α), evoked TRPA1-dependent intrinsic Ca2+ oscillations. Assays with fluorescent Zn2+ indicators revealed that the basal [Zn2+]i concentration was significantly higher in TRPA1-expressing HEK cells and inflammatory FLSs. Moreover, TRPA1 activation induced an elevation of [Zn2+]i level in the presence of 1 μM Zn2+ in inflammatory FLSs. Among the 17 out of 24 known Zn2+ transporters, FLSs that were treated with TNF-α and IL-1α exhibited a higher expression of ZIP8 and ZIP14. Their expression levels were augmented by transfection with an active component of nuclear factor-κB P65 and HIF-1α expression vectors, and they could be abolished by pretreatment with the HIF-1α inhibitor echinomycin (Echi). The functional expression of ZIP8 and ZIP14 in HEK cells significantly increased the basal [Zn2+]i level. Taken together, Zn2+ carrier proteins, TRPA1, ZIP8, and ZIP14, induced under HIF-1α mediated inflammation can synergistically change [Zn2+]i in inflammatory FLSs.  相似文献   

15.
Previous studies have shown that ghrelin reduces colonic inflammation induced by trinitrobenzene sulfonic acid and dextran sodium sulfate. In the present study we determined the effect of treatment with ghrelin on the course of acetic acid-induced colitis in rats. Rectal administration of 3% acetic acid solution led to induction of colitis in all animals. Damage of the colonic wall was accompanied by an increase in mucosal concentration of pro-inflammatory interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), as well mucosal activity of myeloperoxidase. Moreover, induction of colitis led to a reduction in colonic blood flow and DNA synthesis. Administration of ghrelin after induction of colitis led to faster regeneration of the colonic wall and reduction in colonic levels of IL-1β, TNF-α, and myeloperoxidase. In addition, treatment with ghrelin improved mucosal DNA synthesis and blood flow. Our study disclosed that ghrelin exhibits a strong anti-inflammatory and healing effect in acetic acid-induced colitis. Our current observation in association with previous findings that ghrelin exhibits curative effect in trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis suggest that therapeutic effect of ghrelin in the colon is universal and independent of the primary cause of colitis.  相似文献   

16.
Norepinephrine is a neurotransmitter that also has an immunomodulatory effect and is involved in multiple sclerosis (MS) pathogenesis. This study aimed to clarify the role of the β2-adrenoreceptor in the norepinephrine-mediated modulation of interleukin-17 (IL-17) and interferon-γ (IFN-γ) production, which play a critical pathogenetic role in MS. CD4+ T cells obtained from twenty-five relapsing-remitting MS patients and sixteen healthy subjects were cultured ex vivo with norepinephrine and/or β2-adrenoreceptor antagonist or agonist, followed by a cytokine production analysis using ELISA. Norepinephrine suppressed IL-17 and IFN-γ production by the anti-CD3/anti-CD28-microbead-stimulated CD4+ T cells in both groups. Blockade of the β2-adrenoreceptor with the specific antagonist ICI 118.551 enhanced norepinephrine-mediated IL-17 suppression but decreased its inhibitory effect on IFN-γ production in MS patients. In contrast, the β2-adrenoreceptor agonist formoterol did not influence norepinephrine’s inhibitory effect on cytokine production in both groups. The blockade of the β2-adrenoreceptor, even in the absence of exogenous norepinephrine, suppressed IL-17 production but did not influence IFN-γ production in both groups. Conversely, β2-adrenoreceptor activation by formoterol decreased IFN-γ production and did not affect IL-17 production in both groups. These data illustrate the inhibitory effect of norepinephrine on IL-17 and IFN-γ production by CD4+ T cells in MS. The inhibitory effect of norepinephrine on IFN-γ production by CD4+ T cells in MS could be mediated via β2-adrenoreceptor activation.  相似文献   

17.
The pathophysiological processes of inflammatory bowel diseases (IBDs), i.e., Crohn’s disease (CD) and ulcerative colitis (UC), are still not completely understood. The exact etiology remains unknown, but it is well established that the pathogenesis of the inflammatory lesions is due to a dysregulation of the gut immune system resulting in over-production of pro-inflammatory cytokines. Increasing evidence underlines the involvement of both environmental and genetic factors. Regarding the environment, the microbiota seems to play a crucial role. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that exert pleiotropic effects on glucose homeostasis, lipid metabolism, inflammatory/immune processes, cell proliferation, and fibrosis. Furthermore, PPARs modulate interactions with several environmental factors, including microbiota. A significantly impaired PPARγ expression was observed in UC patients’ colonic epithelial cells, suggesting that the disruption of PPARγ signaling may represent a critical step of the IBD pathogenesis. This paper will focus on the role of PPARγ in the interaction between environmental factors and IBD, and it will analyze the most suitable in vitro and in vivo models available to better study these relationships.  相似文献   

18.
19.
The pathological changes of Parkinson’s disease (PD) are, at least partially, associated with the dysregulation of PTEN-induced putative kinase 1 (PINK1) and caspase 3. Since hypoxic and neurotoxic insults are underlying causes of PD, and since δ-opioid receptor (DOR) is neuroprotective against hypoxic/ischemic insults, we sought to determine whether DOR activation could protect the cells from damage induced by hypoxia and/or MPP+ by regulating PINK1 and caspase 3 expressions. We exposed PC12 cells to either severe hypoxia (0.5%–1% O2) for 24–48 h or to MPP+ at different concentrations (0.5, 1, 2 mM) and then detected the levels of PINK1 and cleaved caspase 3. Both hypoxia and MPP+ reduced cell viability, progressively suppressed the expression of PINK1 and increased the cleaved caspase 3. DOR activation using UFP-512, effectively protected the cells from hypoxia and/or MPP+ induced injury, reversed the reduction in PINK1 protein and significantly attenuated the increase in the cleaved caspase 3. On the other hand, the application of DOR antagonist, naltrindole, greatly decreased cell viability and increased cleaved caspase 3. These findings suggest that DOR is cytoprotective against both hypoxia and MPP+ through the regulation of PINK1 and caspase 3 pathways.  相似文献   

20.
Space radiation presents a substantial threat to travel beyond Earth. Relatively low doses of high-energy particle radiation cause physiological and behavioral impairments in rodents and may pose risks to human spaceflight. There is evidence that 56Fe irradiation, a significant component of space radiation, may be more harmful to males than to females and worsen Alzheimer’s disease pathology in genetically vulnerable models. Yet, research on the long-term, sex- and genotype-specific effects of 56Fe irradiation is lacking. Here, we irradiated 4-month-old male and female, wild-type and Alzheimer’s-like APP/PS1 mice with 0, 0.10, or 0.50 Gy of 56Fe ions (1GeV/u). Mice underwent microPET scans before and 7.5 months after irradiation, a battery of behavioral tests at 11 months of age and were sacrificed for pathological and biochemical analyses at 12 months of age. 56Fe irradiation worsened amyloid-beta (Aβ) pathology, gliosis, neuroinflammation and spatial memory, but improved motor coordination, in male transgenic mice and worsened fear memory in wild-type males. Although sham-irradiated female APP/PS1 mice had more cerebral Aβ and gliosis than sham-irradiated male transgenics, female mice of both genotypes were relatively spared from radiation effects 8 months later. These results provide evidence for sex-specific, long-term CNS effects of space radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号