首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Our previous study demonstrated that the glutathione S-transferase Mu 5 (GSTM5) gene is highly CpG-methylated in bladder cancer cells and that demethylation by 5-aza-dC activates GSTM5 gene expression. The aim of the present study was to investigate the role of GSTM5 in bladder cancer. The levels of GSTM5 gene expression and DNA methylation were analyzed in patients with bladder cancer, and functional studies of GSTM5 were conducted using GSTM5 overexpression in cultured bladder cancer cells. Clinical analysis revealed that the GSTM5 mRNA expression was lower in bladder cancer tissues than in normal tissues and that the level of GSTM5 DNA methylation was higher in bladder cancer tissues than in normal urine pellets. Overexpression of GSTM5 decreased cell proliferation, migration and colony formation capacity. Glutathione (GSH) assay results indicated that cellular GSH concentration was decreased by GSTM5 expression and that GSH supplementation reversed the decrease in proliferation and migration of cells overexpressing GSTM5. By contrast, a GSH synthesis inhibitor significantly decreased 5637 cell GSH levels, survival and migration. Furthermore, GSTM5 overexpression inhibited the adhesion of cells to the extracellular matrix protein fibronectin. To elucidate the effect of GSTM5 on anticancer drugs used to treat bladder cancer, cellular viability was compared between cells with or without GSTM5 overexpression. GSTM5-overexpressed cells showed no significant change in the cytotoxicity of cisplatin or mitomycin C in 5637, RT4 and BFTC 905 cells. Though a degree of resistance to doxorubicin was noted in 5637 cells overexpressing GSTM5, no such resistance was observed in RT4 and BFTC 905 cells. In summary, GSTM5 plays a tumor suppressor role in bladder cancer cells without significantly affecting chemoresistance to cisplatin and mitomycin C, and the cellular GSH levels highlight a key mechanism underlying the cancer inhibition effect of GSTM5. These findings suggest that low gene expression and high DNA methylation levels of GSTM5 may act as tumor markers for bladder cancer.  相似文献   

2.
CD26 has been reported as a marker for colorectal cancer stem cells endowed with tumor-initiating properties and capable of colorectal cancer (CRC) metastasis. In this study, we investigated the functional effect of CD26 on CRC angiogenesis and metastasis, and the potential underlying mechanism. The functional effects of CD26 overexpression or repression were determined by a wound healing experiment, and cell migration and invasion assays in vitro and in mouse models. Differentially expressed genes regulated by CD26 were identified by genome-wide mRNA expression array and validated by quantitative PCR. CD26 functionally regulated CRC cell migration and invasion in vitro and angiogenesis and metastasis in vivo. Genome-wide mRNA expression array and qPCR showed that MMP1 was up-regulated in CD26+ subpopulation, and a subsequent experiment demonstrated the regulatory effect of CD26 on MMP1 in CRC cell lines with CD26 repression or overexpression. Furthermore, overexpression of CAV1 abrogated the CD26-regulated MMP1 induction in CRC cell lines. This study demonstrated the functional roles of CD26 in inducing CRC migration, invasion, angiogenesis and metastasis and identified the potential involvement of MMP1 and CAV1 in such process. CD26 is an attractive therapeutic target for combating tumor progression to improve the prognosis of CRC patients.  相似文献   

3.
4.
Background: The interleukin-1-receptor antagonist IL1RA (encoded by the IL1RN gene) is a potent competitive antagonist to interleukin-1 (IL1) and thereby is mainly involved in the regulation of inflammation. Previous data indicated a role of IL1RA in muscle-invasive urothelial carcinoma of the bladder (UCB) as well as an IL1-dependent decrease in tissue barrier function, potentially contributing to cancer cell invasion. Objective: Based on these observations, here we investigated the potential roles of IL1RA, IL1A, and IL1B in bladder cancer cell invasion in vitro. Methods: Cell culture, real-time impedance sensing, invasion assays (Boyden chamber, pig bladder model), qPCR, Western blot, ELISA, gene overexpression. Results: We observed a loss of IL1RA expression in invasive, high-grade bladder cancer cell lines T24, UMUC-3, and HT1197 while IL1RA expression was readily detectable in the immortalized UROtsa cells, the non-invasive bladder cancer cell line RT4, and in benign patient urothelium. Thus, we modified the invasive human bladder cancer cell line T24 to ectopically express IL1RA, and measured changes in cell migration/invasion using the xCELLigence Real-Time-Cell-Analysis (RTCA) system and the Boyden chamber assay. The real-time observation data showed a significant decrease of cell migration and invasion in T24 cells overexpressing IL1RA (T24-IL1RA), compared to cells harboring an empty vector (T24-EV). Concurrently, tumor cytokines, e.g., IL1B, attenuated the vascular endothelial barrier, which resulted in a reduction of the Cell Index (CI), an impedance-based dimensionless unit. This reduction could be reverted by the simultaneous incubation with IL1RA. Moreover, we used an ex vivo porcine organ culture system to evaluate cell invasion capacity and showed that T24-IL1RA cells showed significantly less invasive capacity compared to parental T24 cells or T24-EV. Conclusions: Taken together, our results indicate an inverse correlation between IL1RA expression and tumor cell invasive capacity and migration, suggesting that IL1RA plays a role in bladder carcinogenesis, while the exact mechanisms by which IL1RA influences tumor cells migration/invasion remain to be clarified in future studies. Furthermore, we confirmed that real-time impedance sensing and the porcine ex vivo organ culture methods are powerful tools to discover differences in cancer cell migration and invasion.  相似文献   

5.
The dysregulation of store-operated Ca2+ entry (SOCE) promotes cancer progression by changing Ca2+ levels in the cytosol or endoplasmic reticulum. Stromal interaction molecule 1 (STIM1), a component of SOCE, is upregulated in several types of cancer and responsible for cancer cell migration, invasion, and metastasis. To explore the impact of STIM1-mediated SOCE on the turnover of focal adhesion (FA) and cell migration, we overexpressed the wild-type and constitutively active or dominant negative variants of STIM1 in an osteosarcoma cell line. In this study, we hypothesized that STIM1-mediated Ca2+ elevation may increase cell migration. We found that constitutively active STIM1 dramatically increased the Ca2+ influx, calpain activity, and turnover of FA proteins, such as the focal adhesion kinase (FAK), paxillin, and vinculin, which impede the cell migration ability. In contrast, dominant negative STIM1 decreased the turnover of FA proteins as its wild-type variant compared to the cells without STIM1 overexpression while promoting cell migration. These unexpected results suggest that cancer cells need an appropriate amount of Ca2+ to control the assembly and disassembly of focal adhesions by regulating calpain activity. On the other hand, overloaded Ca2+ results in excessive calpain activity, which is not beneficial for cancer metastasis.  相似文献   

6.
Lysine-deficient protein kinase-1 (WNK1) is critical for both embryonic angiogenesis and tumor-induced angiogenesis. However, the downstream effectors of WNK1 during these processes remain ambiguous. In this study, we identified that oxidative stress responsive 1b (osr1b) is upregulated in endothelial cells in both embryonic and tumor-induced angiogenesis in zebrafish, accompanied by downregulation of protein phosphatase 2A (pp2a) subunit ppp2r1bb. In addition, wnk1a and osr1b are upregulated in two liver cancer transgenic fish models: [tert x p53−/−] and [HBx,src,p53−/−,RPIA], while ppp2r1bb is downregulated in [tert x p53−/−]. Furthermore, using HUVEC endothelial cells co-cultured with HepG2 hepatoma cells, we confirmed that WNK1 plays a critical role in the induction of hepatoma cell migration in both endothelial cells and hepatoma cells. Moreover, overexpression of OSR1 can rescue the reduced cell migration caused by shWNK1 knockdown in HUVEC cells, indicating OSR1 is downstream of WNK1 in endothelial cells promoting hepatoma cell migration. Overexpression of PPP2R1A can rescue the increased cell migration caused by WNK1 overexpression in HepG2, indicating that PPP2R1A is a downstream effector in hepatoma. The combinatorial treatment with WNK1 inhibitor (WNK463) and OSR1 inhibitor (Rafoxanide) plus oligo-fucoidan via oral gavage to feed [HBx,src,p53−/−,RPIA] transgenic fish exhibits much more significant anticancer efficacy than Regorafenib for advanced HCC. Importantly, oligo-fucoidan can reduce the cell senescence marker-IL-1β expression. Furthermore, oligo-fucoidan reduces the increased cell senescence-associated β-galactosidase activity in tert transgenic fish treated with WNK1-OSR1 inhibitors. Our results reveal the WNK1–OSR1–PPP2R1A axis plays a critical role in both endothelial and hepatoma cells during tumor-induced angiogenesis promoting cancer cell migration. By in vitro and in vivo experiments, we further uncover the molecular mechanisms of WNK1 and its downstream effectors during tumor-induced angiogenesis. Targeting WNK1–OSR1-mediated anti-angiogenesis and anti-cancer activity, the undesired inflammation response caused by inhibiting WNK1–OSR1 can be attenuated by the combination therapy with oligo-fucoidan and may improve the efficacy.  相似文献   

7.
Tumor metastasis is the main cause of lethality of prostate cancer, because conventional therapies like surgery and hormone treatment rarely work at this stage. Tumor cell migration, invasion and adhesion are necessary processes for metastasis. By providing nutrition and an escape route from the primary site, angiogenesis is also required for tumor metastasis. Phosphatidylinositol 3-kinases (PI3Ks) are well known to play important roles in tumorigenesis as well as metastasis. ZSTK474 is a specific PI3K inhibitor developed for solid tumor therapy. In the present report, antimetastatic activities of ZSTK474 were investigated in vitro by determining the effects on the main metastatic processes. ZSTK474 exhibited inhibitory effects on migration, invasion and adhesive ability of prostate cancer PC3 cells. Furthermore, ZSTK474 inhibited phosphorylation of Akt substrate-Girdin, and the secretion of matrix metalloproteinase (MMP), both of which were reported to be closely involved in migration and invasion. On the other hand, ZSTK474 inhibited the expression of HIF-1α and the secretion of vascular endothelial growth factor (VEGF), suggesting its potential antiangiogenic activity on PC3 cells. Moreover, we demonstrated the antiangiogenesis by determining the effect of ZSTK474-reduced VEGF on tube formation of human umbilical vein endothelial cells (HUVECs). In conclusion, ZSTK474 was demonstrated to have potential in vitro antimetastatic effects on PC3 cells via dual mechanisms: inhibition of metastatic processes including cell migration, invasion and adhesion, and antiangiogenesis via blockade of VEGF secretion.  相似文献   

8.
Cell migration is an essential part of the complex and multistep process that is the development of cancer, a disease that is the second most common cause of death in humans. An important factor promoting the migration of cancer cells is TNF-α, a pro-inflammatory cytokine that, among its many biological functions, also plays a major role in mediating the expression of MMP9, one of the key regulators of cancer cell migration. It is also known that TNF-α is able to induce the Warburg effect in some cells by increasing glucose uptake and enhancing the expression and activity of lactate dehydrogenase subunit A (LDHA). Therefore, the aim of the present study was to investigate the interrelationship between the TNF-α-induced promigratory activity of cancer cells and their glucose metabolism status, using esophageal cancer cells as an example. By inhibiting LDHA activity with sodium oxamate (SO, also known as aminooxoacetic acid sodium salt or oxamic acid sodium salt) or siRNA-mediated gene silencing, we found using wound healing assay and gelatin zymography that LDHA downregulation impairs TNF-α-dependent tumor cell migration and significantly reduces TNF-α-induced MMP9 expression. These effects were associated with disturbances in the activation of the ERK1/2 signaling pathway, as we observed by Western blotting. We also reveal that in esophageal cancer cells, SO effectively reduces the production of lactic acid, which, as we have shown, synergizes the stimulating effect of TNF-α on MMP9 expression. In conclusion, our findings identified LDHA as a regulator of TNF-α-induced cell migration in esophageal cancer cells by the ERK1/2 signaling pathway, suggesting that LDHA inhibitors that limit the migration of cancer cells caused by the inflammatory process may be considered as an adjunct to standard therapy in esophageal cancer patients.  相似文献   

9.
目的探讨缺氧状态下及缺氧诱导因子-1α(Hypoxia-inducible factor-1α,HIF-1α)RNA干扰后,HIF-1α的表达及其与胃癌细胞黏附、游走、侵袭能力的相关性。方法将HIF-1α shRNA真核表达质粒pGPU6/GFP/Neo-HIF-1α-2484转染胃癌细胞SGC-7901,构建靶向干扰HIF-1α表达的SGC-7901稳定转染细胞株;采用Western blot法检测缺氧及HIF-1αRNA干扰对SGC-7901细胞HIF-1α表达的影响;MTT法检测缺氧及HIF-1αRNA干扰对SGC-7901细胞黏附能力的影响;采用Boyden Chamber膜侵袭系统,观察缺氧及HIF-1αRNA干扰对SGC-7901细胞游走及侵袭能力的影响。结果 SGC-7901细胞在缺氧培养4、8和16h时,HIF-1α均呈阳性表达,并随时间的延长而显著增加;细胞粘贴率、游走和侵袭穿膜细胞数分别随时间延长而显著增加,与HIF-1α表达呈显著正相关。HIF-1αRNA干扰后,缺氧SGC-7901细胞HIF-1α表达显著下降,细胞粘贴率、游走和侵袭穿膜细胞数均显著下降。结论 HIF-1α的过度表达导致胃癌细胞黏附、游走及侵袭能力增强,可能是胃癌局部侵袭和远处转移的重要原因之一。  相似文献   

10.
11.
Pulmonary fibrosis (PF) is characterized by aberrant extracellular matrix (ECM) deposition, activation of fibroblasts to myofibroblasts and parenchymal disorganization, which have an impact on the biomechanical traits of the lung. In this context, the balance between matrix metalloproteinases (MMPs) and their tissue inhibitors of metalloproteinases (TIMPs) is lost. Interestingly, several MMPs are overexpressed during PF and exhibit a clear profibrotic role (MMP-2, -3, -8, -11, -12 and -28), but a few are antifibrotic (MMP-19), have both profibrotic and antifibrotic capacity (MMP7), or execute an unclear (MMP-1, -9, -10, -13, -14) or unknown function. TIMPs are also overexpressed in PF; hence, the modulation and function of MMPs and TIMP are more complex than expected. EMMPRIN/CD147 (also known as basigin) is a transmembrane glycoprotein from the immunoglobulin superfamily (IgSF) that was first described to induce MMP activity in fibroblasts. It also interacts with other molecules to execute non-related MMP aactions well-described in cancer progression, migration, and invasion. Emerging evidence strongly suggests that CD147 plays a key role in PF not only by MMP induction but also by stimulating fibroblast myofibroblast transition. In this review, we study the structure and function of MMPs, TIMPs and CD147 in PF and their complex crosstalk between them.  相似文献   

12.
Diallyl trisulfide (DATS), an organosulfur compound in garlic, possesses pronounced anti-cancer potential. However, the anti-invasive mechanism of this compound in human bladder carcinoma is not fully understood. In this study, we evaluated the anti-invasive effects of DATS on a human bladder carcinoma (5637) cell line and investigated the underlying mechanism. The results indicated that DATS suppressed migration and invasion of 5637 cells by reducing the activities and expression of matrix metalloproteinase (MMP)-2 and MMP-9 at both the protein and mRNA levels. DATS treatment up-regulated expression of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 in 5637 cells. The inhibitory effects of DATS on invasiveness were associated with an increase in transepithelial electrical resistance and repression of the levels of claudin family members. Although further studies are needed, our data demonstrate that DATS exhibits anti-invasive effects in 5637 cells by down-regulating the activity of tight junctions and MMPs. DATS may have future utility in clinical applications for treating bladder cancer.  相似文献   

13.
Ubiquitin-specific protease 39 (USP39), a member of the deubiquitinating enzyme family, has been reported to participate in cytokinesis and metastasis. Previous studies determined that USP39 functions as an oncogenic factor in various types of cancer. Here, we reported that USP39 is frequently overexpressed in human lung cancer tissues and non-small-cell lung cancer (NSCLC) cell lines. USP39 knockdown inhibited the proliferation and colony formation of A549 and HCC827 cells and decreased tumorigenic potential in nude mice. Specifically, knocking down USP39 resulted in cell cycle arrest at G2/M and subsequent apoptosis through the activation of the p53 pathway, including upregulation of p21, cleaved-cas3, cleaved-cas9 and downregulation of CDC2 and CycinB1. Moreover, USP39 knockdown significantly inhibited migration and invasion of A549 and HCC827 cells, also via activation of the p53 pathway, and downregulation of MMP2 and MMP9. Importantly, we verified these results in metastasis models in vivo. Collectively, these results not only establish that USP39 functions as an oncogene in lung cancer, but reveal that USP39 has an essential role in regulating cell proliferation and metastasis via activation of the p53 pathway.  相似文献   

14.
Hyaluronic acid (HA) is a glycosaminoglycan component of the extracellular matrix. Studies have shown that various cancers exhibit high levels of HA content, and that an increased amount of HA corresponds to poor patient prognosis. HA has been implicated in cellular interactions that are associated with cancer progression, including cell adhesion, motility, and differentiation. Micropatterned functional HA surfaces were developed to study interactions between cancer cells and HA. The adhesion and migration of cancer cells representing different stages of tumorigenesis were examined. A similar surface patterning approach was used to create HA regions next to fibronectin in two- and three-dimensional settings to visualize and study the interactions between cancer and endothelial cells. The ability to observe the dynamic interactions of cancer cells and angiogenesis within a HA-rich microenvironment will improve the fundamental understanding of cancer progression and contribute to the development of advanced therapeutic targets.  相似文献   

15.
Bladder cancer is a malignancy that remains a therapeutic challenge and requires the identification of new biomarkers and mechanisms of progression. Several studies showed that extracellular vesicles promote angiogenesis, migration and metastasis, and inhibit apoptosis in bladder cancer. This effect may depend on their glycosylation status. Thus, the aim of this study was to compare glycosylation profiles of T-24 urothelial bladder cancer cells, HCV-29 normal ureter epithelial cells, and ectosomes released by both cell lines using lectin blotting and flow cytometry. Ectosomes displayed distinct total and surface glycosylation profiles with abundance of β-1,6-branched glycans and sialilated structures. Then, it was investigated whether the glycosylation status of the T-24 and HCV-29 cells is responsible for the effect exerted by ectosomes on the proliferation and migration of recipient cells. Stronger proproliferative and promigratory activity of T-24-derived ectosomes was observed in comparison to ectosomes from HCV-29 cells. When ectosomes were isolated from DMJ-treated cells, the aforementioned effects were diminished, suggesting that glycans carried by ectosomes were involved in modulation of recipient cell function. HCV-29- and T-24-derived ectosomes also increased the viability and motility of endothelial HUVEC cells and Hs27 fibroblasts. This supports the hypothesis that ectosomes can modulate the function of various cells present in the tumor microenvironment.  相似文献   

16.
Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated nuclear receptor that regulates cellular lipid and glucose metabolism and also plays an inhibitory role in various cancers. However, the role of PPARγ in hepatocellular carcinoma (HCC) remains controversial. This study aimed to investigate the prognostic value of PPARγ in HCC and its role in inhibiting tumor progression, namely, HCC cell growth, migration, and angiogenesis. Immunohistochemical PPARγ staining was examined in 83 HCC specimens to investigate the clinicopathological correlations between PPARγ expression and various parameters. The functional role of PPARγ was determined via PPARγ overexpression and knockdown in HCC cells. Patients with low HCC tissue PPARγ expression were significantly younger (p = 0.006), and exhibited more tumor numbers (p = 0.038), more macroscopic vascular invasion (MVI) (p = 0.008), and more advanced TNM (size of primary tumor, number of regional lymph nodes, and distant metastasis) stages at diagnosis (p = 0.013) than patients with high HCC tissue PPARγ expression. PPARγ knockdown increased HCC cell growth, migration, and angiogenesis, while PPARγ overexpression reduced HCC cell growth, migration, and angiogenesis. These results suggest that low PPARγ expression is an independent predictor of more MVI in HCC patients. PPARγ contributes to the suppression of HCC cell growth, migration, and angiogenesis. Therefore, PPARγ may be a therapeutic target in HCC patients.  相似文献   

17.
TKS5 promotes invasion and migration through the formation of invadopodia in some tumour cells, and it also has an important physiological function in cell migration through podosome formation in various nontumour cells. To date, the role of TKS5 in urothelial cells, and its potential role in BC initiation and progression, has not yet been addressed. Moreover, the contribution of TKS5 to ploidy control and chromosome stability has not been reported in previous studies. Therefore, in the present study, we wished to address the following questions: (i) Is TKS5 involved in the ploidy control of urothelial cells? (ii) What is the mechanism that leads to aneuploidy in response to TKS5 knockdown? (iii) Is TKS5 an oncogene or tumour-suppressor gene in the context of BC? (iv) Does TKS5 affect the proliferation, migration and invasion of BC cells? We assessed the gene and protein expressions via qPCR and Western blot analyses in a set of nontumour cell strains (Y235T, HBLAK and UROtsa) and a set of BC cell lines (RT4, T24, UMUC3 and J82). Following the shRNA knockdown in the TKS5-proficient cells and the ectopic TKS5 expression in the cell lines with low/absent TKS5 expression, we performed functional experiments, such as metaphase, invadopodia and gelatine degradation assays. Moreover, we determined the invasion and migration abilities of these genetically modified cells by using the Boyden chamber and wound-healing assays. The TKS5 expression was lower in the bladder cancer cell lines with higher invasive capacities (T24, UMUC3 and J82) compared to the nontumour cell lines from human ureter (Y235T, HBLAK and UROtsa) and the noninvasive BC cell line RT4. The reduced TKS5 expression in the Y235T cells resulted in augmented aneuploidy and impaired cell division. According to the Boyden chamber and wound-healing assays, TKS5 promotes the invasion and migration of bladder cancer cells. According to the present study, TKS5 regulates the migration and invasion processes of bladder cancer (BC) cell lines and plays an important role in genome stability.  相似文献   

18.
Sorsby fundus dystrophy (SFD) is an autosomal dominant macular disorder caused by mutations in tissue Inhibitor of the metalloproteinase-3 (TIMP3) gene with the onset of symptoms including choroidal neovascularization as early as the second decade of life. We have previously reported that wild-type TIMP3 is an endogenous angiogenesis inhibitor that inhibits Vascular Endothelial Growth Factor (VEGF)-mediated signaling in endothelial cells. In contrast, SFD-related S179C-TIMP3 when expressed in endothelial cells, does not have angiogenesis-inhibitory properties. To evaluate if this is a common feature of TIMP3 mutants associated with SFD, we examined and compared endothelial cells expressing S179C, Y191C and S204C TIMP3 mutants for their angiogenesis-inhibitory function. Western blot analysis, zymography and reverse zymography and migration assays were utilized to evaluate TIMP3 protein, Matrix Metalloproteinase (MMP) and MMP inhibitory activity, VEGF signaling and in vitro migration in endothelial cells expressing (VEGF receptor-2 (VEGFR-2) and wild-type TIMP3 or mutant-TIMP3. We demonstrate that mutant S179C, Y191C- and S204C-TIMP3 all show increased glycosylation and multimerization/aggregation of the TIMP3 protein. In addition, endothelial cells expressing TIMP3 mutations show increased angiogenic activities and elevated VEGFR-2. Removal of N-glycosylation by mutation of Asn184, the only potential N-glycosylation site in mutant TIMP3, resulted in increased aggregation of TIMP3, further upregulation of VEGFR-2, VEGF-induced phosphorylation of VEGFR2 and VEGF-mediated migration concomitant with reduced MMP inhibitory activity. These results suggest that even though mutant TIMP3 proteins are more glycosylated, post-translational deglycosylation may play a critical role in the aggregation of mutant TIMP3 and contribute to the pathogenesis of SFD. The identification of factors that might contribute to changes in the glycome of patients with SFD will be useful. Future studies will evaluate whether variations in the glycosylation of mutant TIMP3 proteins are contributing to the severity of the disease.  相似文献   

19.
Colorectal cancer (CRC) develops by genetic and epigenetic alterations. However, the molecular mechanisms underlying metastatic dissemination remain unclear and could benefit from multi-omics investigations of specific protein families. Matrix metalloproteinases (MMPs) are proteolytic enzymes involved in ECM remodeling and the processing of bioactive molecules. Increased MMP expression promotes the hallmarks of tumor progression, including angiogenesis, invasion, and metastasis, and is correlated with a shortened survival. Nevertheless, the collective role and the possible coordination of MMP members in CRC are poorly investigated. Here, we performed a multi-omics analysis of MMP expression in CRC using data mining and experimental investigations. Several databases were used to deeply mine different expressions between tumor and normal tissues, the genetic and epigenetic alterations, the prognostic value as well as the interrelationships with tumor immune-infiltrating cells (TIICs). A special focus was placed on to MMP2 and MMP9: their expression was correlated with immune markers and the interaction network of co-expressed genes disclosed their implication in epithelial to mesenchymal transition (EMT) and immune response. Finally, the activity levels of MMP2 and MMP9 in a cohort of colon cancer samples, including tissues and the corresponding sera, was also investigated by zymography. Our findings suggested that MMPs could have a high potency, as they are targeted in colon cancer, and might serve as novel biomarkers, especially for their involvement in the immune response. However, further studies are needed to explore the detailed biological functions and molecular mechanisms of MMPs in CRC, also in consideration of their expression and different regulation in several tissues.  相似文献   

20.
G protein-coupled receptor 87 (GPR87) is a newly deorphanized member of the cell surface molecule G protein-coupled receptor family. GPR signaling was shown to play a role in promotion of cell growth and survival, metastasis, and drug resistance. The overexpression of GPR87 has also been reported in many malignant tumors including bladder cancer. The aim of the present study is to examine the effect of silencing GPR87 expression with a replication-deficient recombinant adenoviral vector expressing short hairpin RNA targeting GPR87 (Ad-shGPR87) and to explore the underlying molecular mechanisms in bladder cancer cells. Six GPR87-expressing human bladder cancer cells, HT1197, HT1376, J82, RT112, TCCSUP and UMUC3, were used. Infection with Ad-shGPR87 effectively downregulated the GPR87 expression, and significantly reduced the percentage of viable cells in 4 of 6 cell lines as detected by an MTT assay. Significant inhibition on cell proliferation with Ad-shGPR87 was observed in the wild-type p53 bladder cancer cell lines (HT1197, RT112, TCCSUP and UMUC3), but not in the mutant p53 cells (HT1376 and J82). As represented by a wild-type p53 RT112 cell, Ad-shGPR87 infection significantly enhanced p53 and p21 expression and caused caspase-dependent apoptosis. Furthermore, the treatment with Ad-shGPR87 exerted a significant antitumor effect against the GPR87-expressing RT112 xenografts. GPR87 appeared to be a promising target for gene therapy, and Ad-shGPR87 had strong antitumor effects, specifically anti-proliferative and pro-apoptotic effects, against GPR87-expressing human bladder cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号