共查询到20条相似文献,搜索用时 15 毫秒
1.
Chun-Ling Dai Fei Liu Khalid Iqbal Cheng-Xin Gong 《International journal of molecular sciences》2022,23(23)
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that eventually leads to dementia and death of the patient. Currently, no effective treatment is available that can slow or halt the progression of the disease. The gut microbiota can modulate the host immune system in the peripheral and central nervous system through the microbiota–gut–brain axis. Growing evidence indicates that gut microbiota dysbiosis plays an important role in the pathogenesis of AD, and modulation of the gut microbiota may represent a new avenue for treating AD. Immunotherapy targeting Aβ and tau has emerged as the most promising disease-modifying therapy for the treatment of AD. However, the underlying mechanism of AD immunotherapy is not known. Importantly, preclinical and clinical studies have highlighted that the gut microbiota exerts a major influence on the efficacy of cancer immunotherapy. However, the role of the gut microbiota in AD immunotherapy has not been explored. We found that immunotherapy targeting tau can modulate the gut microbiota in an AD mouse model. In this article, we focused on the crosstalk between the gut microbiota, immunity, and AD immunotherapy. We speculate that modulation of the gut microbiota induced by AD immunotherapy may partially underlie the efficacy of the treatment. 相似文献
2.
Wen Li Mingyue Jiang Shijing Zhao Huan Liu Xumei Zhang John X. Wilson Guowei Huang 《International journal of molecular sciences》2015,16(10):25002-25013
Alzheimer’s disease (AD) is a common neurodegenerative disease resulting in progressive dementia, and is a principal cause of dementia among older adults. Folate acts through one-carbon metabolism to support the methylation of multiple substrates. We hypothesized that folic acid supplementation modulates DNA methyltransferase (DNMT) activity and may alter amyloid β-peptide (Aβ) production in AD. Mouse Neuro-2a cells expressing human APP695 were incubated with folic acid (2.8–40 μmol/L), and with or without zebularine (the DNMT inhibitor). DNMT activity, cell viability, Aβ and DNMTs expression were then examined. The results showed that folic acid stimulated DNMT gene and protein expression, and DNMT activity. Furthermore, folic acid decreased Aβ protein production, whereas inhibition of DNMT activity by zebularine increased Aβ production. The results indicate that folic acid induces methylation potential-dependent DNMT enzymes, thereby attenuating Aβ production. 相似文献
3.
Victoria Campos-Pea Pavel Pichardo-Rojas Talía Snchez-Barbosa Emma Ortíz-Islas Citlali Ekaterina Rodríguez-Prez Pedro Montes Gerardo Ramos-Palacios Daniela Silva-Adaya Rafael Valencia-Quintana Jorge Francisco Cerna-Cortes Danira Toral-Rios 《International journal of molecular sciences》2022,23(20)
The presence of insoluble aggregates of amyloid β (Aβ) in the form of neuritic plaques (NPs) is one of the main features that define Alzheimer’s disease. Studies have suggested that the accumulation of these peptides in the brain significantly contributes to extensive neuronal loss. Furthermore, the content and distribution of cholesterol in the membrane have been shown to have an important effect on the production and subsequent accumulation of Aβ peptides in the plasma membrane, contributing to dysfunction and neuronal death. The monomeric forms of these membrane-bound peptides undergo several conformational changes, ranging from oligomeric forms to beta-sheet structures, each presenting different levels of toxicity. Aβ peptides can be internalized by particular receptors and trigger changes from Tau phosphorylation to alterations in cognitive function, through dysfunction of the cholinergic system. The goal of this review is to summarize the current knowledge on the role of lipids in Alzheimer’s disease and their relationship with the basal cholinergic system, as well as potential disease-modifying therapies. 相似文献
4.
Toshisuke Kaku Kaori Tsukakoshi Kazunori Ikebukuro 《International journal of molecular sciences》2021,22(23)
Significant research on Alzheimer’s disease (AD) has demonstrated that amyloid β (Aβ) oligomers are toxic molecules against neural cells. Thus, determining the generation mechanism of toxic Aβ oligomers is crucial for understanding AD pathogenesis. Aβ fibrils were reported to be disaggregated by treatment with small compounds, such as epigallocatechin gallate (EGCG) and dopamine (DA), and a loss of fibril shape and decrease in cytotoxicity were observed. However, the characteristics of intermediate products during the fibril disaggregation process are poorly understood. In this study, we found that cytotoxic Aβ aggregates are generated during a moderate disaggregation process of Aβ fibrils. A cytotoxicity assay revealed that Aβ fibrils incubated with a low concentration of EGCG and DA showed higher cytotoxicity than Aβ fibrils alone. Atomic force microscopy imaging and circular dichroism spectrometry showed that short and narrow protofilaments, which were highly stable in the β-sheet structure, were abundant in these moderately disaggregated samples. These results indicate that toxic Aβ protofilaments are generated during disaggregation from amyloid fibrils, suggesting that disaggregation of Aβ fibrils by small compounds may be one of the possible mechanisms for the generation of toxic Aβ aggregates in the brain. 相似文献
5.
Christophe Mesangeau Pascal Carato Nicolas Renault Mathilde Coevoet Paul-Emmanuel Larchanch Amlie Barczyk Luc Bue Nicolas Sergeant Patricia Melnyk 《International journal of molecular sciences》2022,23(21)
The rationale to define the biological and molecular parameters derived from structure–activity relationships (SAR) is mandatory for the lead selection of small drug compounds. Several series of small molecules have been synthesized based on a computer-assisted pharmacophore design derived from two series of compounds whose scaffold originates from chloroquine or amodiaquine. All compounds share similar biological activities. In vivo, Alzheimer’s disease-related pathological lesions are reduced, consisting of amyloid deposition and neurofibrillary degeneration, which restore and reduce cognitive-associated impairments and neuroinflammation, respectively. Screening election was performed using a cell-based assay to measure the repression of Aβ1–x peptide production, the increased stability of APP metabolites, and modulation of the ratio of autophagy markers. These screening parameters enabled us to select compounds as potent non-competitive β-secretase modulators, associated with various levels of lysosomotropic or autophagy modulatory activities. Structure–activity relationship analyses enabled us to define that (1) selectively reducing the production of Aβ1–x, and (2) little Aβx–40/42 modification together with (3) a decreased ratio of p62/(LC3-I/LC3-II) enabled the selection of non-competitive β-secretase modulators. Increased stability of CTFα and AICD precluded the selection of compounds with lysosomotropic activity whereas cell toxicity was associated with the sole p62 enhanced expression shown to be driven by the loss of nitrogen moieties. These SAR parameters are herein proposed with thresholds that enable the selection of potent anti-Alzheimer drugs for which further investigation is necessary to determine the basic mechanism underlying their mode of action. 相似文献
6.
Zong-Ping Zhang Xue Bai Wen-Bo Cui Xiao-Han Chen Xu Liu De-Juan Zhi Zhan-Xin Zhang Dong-Qing Fei Dong-Sheng Wang 《International journal of molecular sciences》2022,23(12)
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease in the world. However, there is no effective drug to cure it. Caesalmin C is a cassane-type diterpenoid abundant in Caesalpinia bonduc (Linn.) Roxb. In this study, we investigated the effect of caesalmin C on Aβ-induced toxicity and possible mechanisms in the transgenic Caenorhabditis elegans AD model. Our results showed that caesalmin C significantly alleviated the Aβ-induced paralysis phenotype in transgenic CL4176 strain C. elegans. Caesalmin C dramatically reduced the content of Aβ monomers, oligomers, and deposited spots in AD C. elegans. In addition, mRNA levels of sod-3, gst-4, and rpt-3 were up-regulated, and mRNA levels of ace-1 were down-regulated in nematodes treated with caesalmin C. The results of the RNAi assay showed that the inhibitory effect of caesalmin C on the nematode paralysis phenotype required the DAF-16 signaling pathway, but not SKN-1 and HSF-1. Further evidence suggested that caesalmin C may also have the effect of inhibiting acetylcholinesterase (AchE) and upregulating proteasome activity. These findings suggest that caesalmin C delays the progression of AD in C. elegans via the DAF-16 signaling pathway and that it could be developed into a promising medication to treat AD. 相似文献
7.
Ersilia De Lorenzi Davide Franceschini Cecilia Contardi Rita Maria Concetta Di Martino Francesca Seghetti Massimo Serra Federica Bisceglia Andrea Pagetta Morena Zusso Federica Belluti 《International journal of molecular sciences》2022,23(8)
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is not restricted to the neuronal compartment but includes important interactions with immune cells, including microglia. Protein aggregates, common pathological hallmarks of AD, bind to pattern recognition receptors on microglia and trigger an inflammatory response, which contributes to disease progression and severity. In this context, curcumin is emerging as a potential drug candidate able to affect multiple key pathways implicated in AD, including neuroinflammation. Therefore, we studied the effect of curcumin and its structurally related analogues cur6 and cur16 on amyloid-β (Aβ)-induced microglia activation and neuronal cell death, as well as their effect on the modulation of Aβ aggregation. Primary cortical microglia and neurons were exposed to two different populations of Aβ42 oligomers (Aβ42Os) where the oligomeric state had been assigned by capillary electrophoresis and ultrafiltration. When stimulated with high molecular weight Aβ42Os, microglia released proinflammatory cytokines that led to early neuronal cell death. The studied compounds exerted an anti-inflammatory effect on high molecular weight Aβ42O-stimulated microglia and possibly inhibited microglia-mediated neuronal cell toxicity. Furthermore, the tested compounds demonstrated antioligomeric activity during the process of in vitro Aβ42 aggregation. These findings could be investigated further and used for the optimization of multipotent candidate molecules for AD treatment. 相似文献
8.
Dorit Trudler Swagata Ghatak Stuart A. Lipton 《International journal of molecular sciences》2021,22(15)
Neurodegenerative diseases affect millions of people worldwide and are characterized by the chronic and progressive deterioration of neural function. Neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD), represent a huge social and economic burden due to increasing prevalence in our aging society, severity of symptoms, and lack of effective disease-modifying therapies. This lack of effective treatments is partly due to a lack of reliable models. Modeling neurodegenerative diseases is difficult because of poor access to human samples (restricted in general to postmortem tissue) and limited knowledge of disease mechanisms in a human context. Animal models play an instrumental role in understanding these diseases but fail to comprehensively represent the full extent of disease due to critical differences between humans and other mammals. The advent of human-induced pluripotent stem cell (hiPSC) technology presents an advantageous system that complements animal models of neurodegenerative diseases. Coupled with advances in gene-editing technologies, hiPSC-derived neural cells from patients and healthy donors now allow disease modeling using human samples that can be used for drug discovery. 相似文献
9.
Ryan S. Wong David F. Cechetto Shawn N. Whitehead 《International journal of molecular sciences》2016,17(9)
Alzheimer’s disease (AD) is the most common form of dementia, yet there are no therapeutic treatments that can either cure or delay its onset. Currently, the pathogenesis of AD is still uncertain, especially with respect to how the disease develops from a normal healthy brain. Amyloid β oligomers (AβO) are highly neurotoxic proteins and are considered potential initiators to the pathogenesis of AD. Rat brains were exposed to AβO via bilateral intracerebroventricular injections. Rats were then euthanized at either 1, 3, 7 or 21-days post surgery. Rat behavioural testing was performed using the Morris water maze and open field tests. Post-mortem brain tissue was immunolabelled for Aβ, microglia, and cholinergic neurons. Rats exposed to AβO showed deficits in spatial learning and anxiety-like behaviour. Acute positive staining for Aβ was only observed in the corpus callosum surrounding the lateral ventricles. AβO exposed rat brains also showed a delayed increase in activated microglia within the corpus callosum and a decreased number of cholinergic neurons within the basal forebrain. Acute exposure to AβO resulted in mild learning and memory impairments with co-concomitant white matter pathology within the corpus callosum and cholinergic cell loss within the basal forebrain. Results suggest that acute exposure to AβO in the rat may be a useful tool in assessing the early phases for the pathogenesis of AD. 相似文献
10.
Youngsoo Oh Wongyoung Lee So Hee Kim Sooji Lee Byeong C. Kim Kun Ho Lee Sung Hyun Kim Woo Keun Song 《International journal of molecular sciences》2022,23(18)
Alzheimer’s disease (AD), a common form of dementia, is caused in part by the aggregation and accumulation in the brain of amyloid β (Aβ), a product of the proteolytic cleavage of amyloid precursor protein (APP) in endosomes. Trafficking of APP, such as surface-intracellular recycling, is an early critical step required for Aβ generation. Less is known, however, about the molecular mechanism regulating APP trafficking. This study investigated the mechanism by which SPIN90, along with Rab11, modulates APP trafficking, Aβ motility and accumulation, and synaptic functionality. Brain Aβ deposition was lower in the progeny of 5xFAD-SPIN90KO mice than in 5xFAD-SPIN90WT mice. Analysis of APP distribution and trafficking showed that the surface fraction of APP was locally distinct in axons and dendrites, with these distributions differing significantly in 5xFAD-SPIN90WT and 5xFAD-SPIN90KO mice, and that neural activity-driven APP trafficking to the surface and intracellular recycling were more actively mobilized in 5xFAD-SPIN90KO neurons. In addition, SPIN90 was found to be cotrafficked with APP via axons, with ablation of SPIN90 reducing the intracellular accumulation of APP in axons. Finally, synaptic transmission was restored over time in 5xFAD-SPIN90KO but not in 5xFAD-SPIN90WT neurons, suggesting SPIN90 is implicated in Aβ production through the regulation of APP trafficking. 相似文献
11.
Chiara Bacchella Simone DellAcqua Stefania Nicolis Enrico Monzani Luigi Casella 《International journal of molecular sciences》2021,22(10)
The redox chemistry of copper(II) is strongly modulated by the coordination to amyloid-β peptides and by the stability of the resulting complexes. Amino-terminal copper and nickel binding motifs (ATCUN) identified in truncated Aβ sequences starting with Phe4 show very high affinity for copper(II) ions. Herein, we study the oxidase activity of [Cu–Aβ4−x] and [Cu–Aβ1−x] complexes toward dopamine and other catechols. The results show that the CuII–ATCUN site is not redox-inert; the reduction of the metal is induced by coordination of catechol to the metal and occurs through an inner sphere reaction. The generation of a ternary [CuII–Aβ–catechol] species determines the efficiency of the oxidation, although the reaction rate is ruled by reoxidation of the CuI complex. In addition to the N-terminal coordination site, the two vicinal histidines, His13 and His14, provide a second Cu-binding motif. Catechol oxidation studies together with structural insight from the mixed dinuclear complexes Ni/Cu–Aβ4−x reveal that the His-tandem is able to bind CuII ions independently of the ATCUN site, but the N-terminal metal complexation reduces the conformational mobility of the peptide chain, preventing the binding and oxidative reactivity toward catechol of CuII bound to the secondary site. 相似文献
12.
Krista Minia Wartchow Leticia Rodrigues Izabela Swierzy Michael Buchfelder Diogo Onofre de Souza Carlos-Alberto Gonalves Andrea Kleindienst 《International journal of molecular sciences》2021,22(19)
(1) Background: Calcium-binding protein S100B is involved in neuroregeneration but has also been associated with neurodegeneration. These contrasting effects may result from concentration or duration of exposure. We investigated the effect of long-term increased S100B levels on amyloid-β processing in one-year-old transgenic (tg) mice with 12 copies of the murine S100B gene with specific consideration of sex and specific brain regions. (2) Methods: S100B and amyloid-β 42 (Aβ42) were quantified in serum, cerebrospinal fluid (CSF), adipose tissue, and different brain regions by ELISA in wild-type (wt) and S100Btg mice (each n = 7 per group). Thioflavin T (ThT) and Aβ immunostaining were performed for visualization of Aβ deposition. (3) Results: S100B in serum, CSF, and brain was significantly increased in S100Btg mice of both sexes. Aβ42 was significantly increased in the hippocampus of male S100Btg mice (p = 0.0075), and the frontal cortex of female S100Btg mice (p = 0.0262). ThT and Aβ immunostaining demonstrated Aβ deposition in different brain regions in S100Btg mice of both sexes and female wt. (4) Conclusion: Our data validate this experimental model for studying the role of S100B in neurodegeneration and indicate that Aβ processing is sex-dependent and brain region-specific, which deserves further investigation of signaling pathways and behavioral responses. 相似文献
13.
14.
Jie Gao Chen Suo Jui-Heng Tseng Melissa A. Moss Alvin V. Terry Jr. James Chapman 《International journal of molecular sciences》2021,22(6)
The aggregation of amyloid β (Aβ) peptides and deposition of amyloid plaques are implicated in the pathogenesis of Alzheimer’s disease (AD). Therefore, blocking Aβ aggregation with small molecules has been proposed as one therapeutic approach for AD. In the present study, a series of ranitidine analogs containing cyclic imide isosteres were synthesized and their inhibitory activities toward Aβ aggregation were evaluated using in vitro thioflavin T assays. The structure–activity relationship revealed that the 1,8-naphthalimide moiety provided profound inhibition of Aβ aggregation and structural modifications on the other parts of the parent molecule (compound 6) maintained similar efficacy. Some of these ranitidine analogs also possessed potent inhibitory activities of acetylcholinesterase (AChE), which is another therapeutic target in AD. These ranitidine analogs, by addressing both Aβ aggregation and AChE, offer insight into the key chemical features of a new type of multi-target directed ligands for the pharmaceutical treatment of AD. 相似文献
15.
Aileen Roth Fabian Grtner Katja Mayer Julian Beyrle Irina Knig Uwe Knippschild Joachim Bischof 《International journal of molecular sciences》2021,22(12)
Alzheimer’s disease (AD) is the major cause of dementia, and affected individuals suffer from severe cognitive, mental, and functional impairment. Histologically, AD brains are basically characterized by the presence of amyloid plaques and neurofibrillary tangles. Previous reports demonstrated that protein kinase CK1δ influences the metabolism of amyloid precursor protein (APP) by inducing the generation of amyloid-β (Aβ), finally contributing to the formation of amyloid plaques and neuronal cell death. We therefore considered CK1δ as a promising therapeutic target and suggested an innovative strategy for the treatment of AD based on peptide therapeutics specifically modulating the interaction between CK1δ and APP. Initially, CK1δ-derived peptides manipulating the interactions between CK1δ and APP695 were identified by interaction and phosphorylation analysis in vitro. Selected peptides subsequently proved their potential to penetrate cells without inducing cytotoxic effects. Finally, for at least two of the tested CK1δ-derived peptides, a reduction in Aβ levels and amyloid plaque formation could be successfully demonstrated in a complex cell culture model for AD. Consequently, the presented results provide new insights into the interactions of CK1δ and APP695 while also serving as a promising starting point for further development of novel and highly innovative pharmacological tools for the treatment of AD. 相似文献
16.
A dysfunctional protein aggregation in the nervous system can lead to several neurodegenerative disorders that result in intracellular inclusions or extracellular aggregates. An early critical event within the pathogenesis of Alzheimer’s disease is the accumulation of amyloid beta peptide within the brain. Natural compounds isolated from Psoralea Fructus (PF) have significant anti-Alzheimer effects as strong inhibitors of Aβ42 aggregation. Computer simulations provide a powerful means of linking experimental findings to nanoscale molecular events. As part of this research four prenylated compounds, the active ingredients of Psoralea Fructus (PF), were studied as Aβ42 accumulation inhibitors using molecular simulations modeling. In order to resolve the binding modes of the ligands and identify the main interactions of Aβ42 residues, we performed a 100 ns molecular dynamics simulation and binding free energy calculations starting from the model of the compounds obtained from the docking study. This study was able to pinpoint the key amino acid residues in the Aβ42 active site and provide useful information that could benefit the development of new Aβ42 accumulation inhibitors. 相似文献
17.
Chairmandurai Aravindraja Ravi Sakthivel Xuefei Liu Marshall Goodwin Patnam Veena Valentina Godovikova J. Christopher Fenno Yona Levites Todd E. Golde Lakshmyya Kesavalu 《International journal of molecular sciences》2022,23(6)
The impact of oral microbial dysbiosis on Alzheimer’s disease (AD) remains controversial. Building off recent studies reporting that various microbes might directly seed or promote amyloid β (Aβ) deposition, we evaluated the effects of periodontal bacteria (Porphyromonas gingivalis, Treponema denticola) and supragingival commensal (Streptococcus gordonii) oral bacterial infection in the APP-transgenic CRND8 (Tg) mice model of AD. We tracked bacterial colonization and dissemination, and monitored effects on gliosis and amyloid deposition. Chronic oral infection did not accelerate Aβ deposition in Tg mice but did induce alveolar bone resorption, IgG immune response, and an intracerebral astrogliosis (GFAP: glial fibrillary acidic protein). In contrast, intracerebral inoculation of live but not heat-killed P. gingivalis increased Aβ deposition and Iba-1 (ionized calcium-binding adaptor-1) microgliosis after 8 weeks of bacterial infection but not at 4 days. These data show that there may be differential effects of infectious microbes on glial activation and amyloid deposition depending on the species and route of inoculation, and thereby provide an important framework for future studies. Indeed, these studies demonstrate marked effects on amyloid β deposition only in a fairly non-physiologic setting where live bacteria is injected directly into the brain. 相似文献
18.
Kaori Tsukakoshi Rikako Kubo Kazunori Ikebukuro 《International journal of molecular sciences》2022,23(23)
Amyloid β (Aβ) oligomers play a key role in the progression of Alzheimer’s disease (AD). Multiple forms of Aβ assemblies have been identified by in vitro and in vivo analyses; however, it is uncertain which oligomer is highly neurotoxic. Thus, understanding the pathogenesis of AD by detecting toxic Aβ oligomers is crucial. In this study, we report a fusion protein of cellular prion protein (PrPc) and alkaline phosphatase (ALP) from Escherichia coli as a sensing element for toxic Aβ oligomers. Since the N-terminus domain of PrPc (residue 23–111) derived from mice is known to bind to toxic Aβ oligomers in vitro, we genetically fused PrPc23–111 to ALP. The developed fusion protein, PrP–ALP, retained both the binding ability of PrPc and enzymatic activity of ALP. We showed that PrP–ALP strongly bound to high molecular weight (HMW) oligomers but showed little or no affinity toward monomers. The observation that PrP–ALP neutralized the toxic effect of Aβ oligomers indicated an interaction between PrP–ALP and toxic HMW oligomers. Based on ALP activity, we succeeded in detecting Aβ oligomers. PrP–ALP may serve as a powerful tool for detecting toxic Aβ oligomers that may be related to AD progression. 相似文献
19.
Agnes Paulus Anders Engdahl Yiyi Yang Antonio Boza-Serrano Sara Bachiller Laura Torres-Garcia Alexander Svanbergsson Megg G. Garcia Gunnar K. Gouras Jia-Yi Li Tomas Deierborg Oxana Klementieva 《International journal of molecular sciences》2021,22(7)
Alzheimer’s disease affects millions of lives worldwide. This terminal disease is characterized by the formation of amyloid aggregates, so-called amyloid oligomers. These oligomers are composed of β-sheet structures, which are believed to be neurotoxic. However, the actual secondary structure that contributes most to neurotoxicity remains unknown. This lack of knowledge is due to the challenging nature of characterizing the secondary structure of amyloids in cells. To overcome this and investigate the molecular changes in proteins directly in cells, we used synchrotron-based infrared microspectroscopy, a label-free and non-destructive technique available for in situ molecular imaging, to detect structural changes in proteins and lipids. Specifically, we evaluated the formation of β-sheet structures in different monogenic and bigenic cellular models of Alzheimer’s disease that we generated for this study. We report on the possibility to discern different amyloid signatures directly in cells using infrared microspectroscopy and demonstrate that bigenic (amyloid-β, α-synuclein) and (amyloid-β, Tau) neuron-like cells display changes in β-sheet load. Altogether, our findings support the notion that different molecular mechanisms of amyloid aggregation, as opposed to a common mechanism, are triggered by the specific cellular environment and, therefore, that various mechanisms lead to the development of Alzheimer’s disease. 相似文献
20.
Although it is not yet universally accepted that all neurodegenerative diseases (NDs) are prion disorders, there is little disagreement that Alzheimer’s disease (AD), Parkinson’s disease, frontotemporal dementia (FTD), and other NDs are a consequence of protein misfolding, aggregation, and spread. This widely accepted perspective arose from the prion hypothesis, which resulted from investigations on scrapie, a common transmissible disease of sheep and goats. The prion hypothesis argued that the causative infectious agent of scrapie was a novel proteinaceous pathogen devoid of functional nucleic acids and distinct from viruses, viroids, and bacteria. At the time, it seemed impossible that an infectious agent like the one causing scrapie could replicate and exist as diverse microbiological strains without nucleic acids. However, aggregates of a misfolded host-encoded protein, designated the prion protein (PrP), were shown to be the cause of scrapie as well as Creutzfeldt–Jakob disease (CJD) and Gerstmann–Sträussler–Scheinker syndrome (GSS), which are similar NDs in humans. This review discusses historical research on diseases caused by PrP misfolding, emphasizing principles of pathogenesis that were later found to be core features of other NDs. For example, the discovery that familial prion diseases can be caused by mutations in PrP was important for understanding prion replication and disease susceptibility not only for rare PrP diseases but also for far more common NDs involving other proteins. We compare diseases caused by misfolding and aggregation of APP-derived Aβ peptides, tau, and α-synuclein with PrP prion disorders and argue for the classification of NDs caused by misfolding of these proteins as prion diseases. Deciphering the molecular pathogenesis of NDs as prion-mediated has provided new approaches for finding therapies for these intractable, invariably fatal disorders and has revolutionized the field. 相似文献