首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Telmisartan (TM) has been proposed to relieve inflammatory responses by modulating peroxisome proliferator activator receptor-γ (PPARγ) signaling. This study aimed to investigate the protective effects of TM on kanamycin(KM)-induced ototoxicity in rats. Forty-eight, 8-week-old female Sprague Dawley rats were divided into four groups: (1) control group, (2) TM group, (3) KM group, and (4) TM + KM group. Auditory brainstem response was measured. The histology of the cochlea was examined. The protein expression levels of angiotensin-converting enzyme 2 (ACE2), HO1, and PPARγ were measured by Western blotting. The auditory threshold shifts at 4, 8, 16, and 32 kHz were lower in the TM + KM group than in the KM group (all p < 0.05). The loss of cochlear outer hair cells and spiral ganglial cells was lower in the TM + KM group than in the KM group. The protein expression levels of ACE2, PPARγ, and HO1 were higher in the KM group than in the control group (all p < 0.05). The TM + KM group showed lower expression levels of PPARγ and HO1 than the KM group.TM protected the cochlea from KM-induced injuries in rats. TM preserved hearing levels and attenuated the increase in PPARγ and HO1 expression levels in KM-exposed rat cochleae.  相似文献   

3.
The triad of noise-generated, drug-induced, and age-related hearing loss is the major cause of acquired sensorineural hearing loss (ASNHL) in modern society. Although these three forms of hearing loss display similar underlying mechanisms, detailed studies have revealed the presence of sex differences in the auditory system both in human and animal models of ASNHL. However, the sexual dimorphism of hearing varies among noise-induced hearing loss (NIHL), ototoxicity, and age-related hearing loss (ARHL). Importantly, estrogen may play an essential role in modulating the pathophysiological mechanisms in the cochlea and several reports have shown that the effects of hormone replacement therapy on hearing loss are complex. This review will summarize the clinical features of sex differences in ASNHL, compare the animal investigations of cochlear sexual dimorphism in response to the three insults, and address how estrogen affects the auditory organ at molecular levels.  相似文献   

4.
5.
Age-related hearing loss (ARHL), a sensorineural hearing loss of multifactorial origin, increases its prevalence in aging societies. Besides hearing aids and cochlear implants, there is no FDA approved efficient pharmacotherapy to either cure or prevent ARHL. We hypothesized that selegiline, an antiparkinsonian drug, could be a promising candidate for the treatment due to its complex neuroprotective, antioxidant, antiapoptotic, and dopaminergic neurotransmission enhancing effects. We monitored by repeated Auditory Brainstem Response (ABR) measurements the effect of chronic per os selegiline administration on the hearing function in BALB/c and DBA/2J mice, which strains exhibit moderate and rapid progressive high frequency hearing loss, respectively. The treatments were started at 1 month of age and lasted until almost a year and 5 months of age, respectively. In BALB/c mice, 4 mg/kg selegiline significantly mitigated the progression of ARHL at higher frequencies. Used in a wide dose range (0.15–45 mg/kg), selegiline had no effect in DBA/2J mice. Our results suggest that selegiline can partially preserve the hearing in certain forms of ARHL by alleviating its development. It might also be otoprotective in other mammals or humans.  相似文献   

6.
Previous preclinical studies have demonstrated the otoprotective effects of resveratrol (RV) at low doses. This study aimed to investigate the dose-dependent effects of RV in rats with cisplatin (CXP)-induced hearing loss. Sprague-Dawley rats (8-weeks old) were divided into six treatment groups (n = 12/group) and treated as follows: control, 0.5 mg/kg RV, 50 mg/kg RV, CXP, 0.5 mg/kg RV + CXP), and 50 mg/kg RV + CXP groups. CXP (3 mg/kg) was intraperitoneally injected for 5 days. RV (0.5 or 50 mg/kg) was intraperitoneally injected for 10 days from the first day of CXP administration. Auditory brainstem response (ABR) thresholds were measured before and within 3 days at the end of the drug administration. Cochlear tissues were harvested, and the outer hair cells were examined using cochlear whole mounts. The mRNA expression of NFκB, IL6, IL1β, and CYP1A1, and protein levels of aryl hydrocarbon receptor (AhR) and cytosolic and nuclear receptor for advanced glycation endproducts (RAGE) were evaluated. The ABR threshold increased in the 50 mg/kg RV and CXP groups at 4, 8, 16, and 32 kHz. The 0.5 mg/kg RV + CXP group demonstrated decreased hearing thresholds at 4 and 32 kHz compared to the CXP group. Cochlear whole-mount analysis revealed loss of outer hair cells in the 50 mg/kg RV and CXP groups and partial prevention of these cells in the 0.5 mg/kg RV + CXP group. The mRNA expressions of NFκB, IL6, and IL1β were increased in the 50 mg/kg RV and CXP groups compared to the control group. In contrast, these levels were decreased in the 0.5 mg/kg RV + CXP group compared to the CXP group. The mRNA expression of CYP1A1 was increased in the CXP group, while it was decreased in the 0.5 mg/kg RV + CXP group compared to the control group. The protein levels of AhR and cytosolic RAGE decreased in the 0.5 mg/kg RV group. Low-dose RV had partial otoprotective effects on CXP ototoxicity. The otoprotective effects of RV may be mediated through anti-oxidative (CYP1A1 and RAGE) and anti-inflammatory (NFκB, IL6, and IL1β) responses. High-dose RV exerted an inflammatory response and did not ameliorate CXP-induced ototoxicity.  相似文献   

7.
Sudden sensorineural hearing loss seems to become a serious social health problem in modern societies. According to the World Health Organization (WHO) reports, adult-onset sensorineural hearing loss is found to be one of the leading diseases at the global level, especially in high-income countries, and is foreseen to move up from the 14th to 7th leading cause of the global burden of diseases by the year 2030. Although the direct mortality rate of this disease is very low, its influence on quality of life is huge; that is the reason why the implementation of the most effective and the safest therapies for the patient is crucial for minimizing the risk of complications and adverse reactions to treatment. The aim of this paper is to present hyperbaric oxygen therapy (HBOT) as a medical procedure useful in the treatment of sudden sensorineural hearing loss as adjunctive therapy of high efficacy. This paper focuses on the molecular mechanisms of action and clinical effectiveness of HBOT in the treatment of idiopathic sudden deafness, taking into consideration both the benefits and potential risks of its implementation.  相似文献   

8.
先天性巨细胞病毒感染是引起婴幼儿感觉神经性耳聋的重要原因,也是先天性巨细胞病毒感染最常见的后遗症。耳聋的症状可在新生儿期出现,也可在出生后一段时间(通常在1岁左右)出现。对患儿使用安全范围内的抗病毒药物治疗可以改善听力。本文就婴幼儿先天性巨细胞病毒感染性感觉神经性耳聋的研究进展作一综述。  相似文献   

9.
This article provides a theoretical overview of the association between age-related hearing loss (ARHL), immune system ageing (immunosenescence), and chronic inflammation. ARHL, or presbyacusis, is the most common sensory disability that significantly reduces the quality of life and has a high economic impact. This disorder is linked to genetic risk factors but is also influenced by a lifelong cumulative effect of environmental stressors, such as noise, otological diseases, or ototoxic drugs. Age-related hearing loss and other age-related disorders share common mechanisms which often converge on low-grade chronic inflammation known as “inflammaging”. Various stimuli can sustain inflammaging, including pathogens, cell debris, nutrients, and gut microbiota. As a result of ageing, the immune system can become defective, leading to the accumulation of unresolved inflammatory processes in the body. Gut microbiota plays a central role in inflammaging because it can release inflammatory mediators and crosstalk with other organ systems. A proinflammatory gut environment associated with ageing could result in a leaky gut and the translocation of bacterial metabolites and inflammatory mediators to distant organs via the systemic circulation. Here, we postulate that inflammaging, as a result of immunosenescence and gut dysbiosis, accelerates age-related cochlear degeneration, contributing to the development of ARHL. Age-dependent gut dysbiosis was included as a hypothetical link that should receive more attention in future studies.  相似文献   

10.
Connexin26 (Cx26, encoded by GJB2) mutations are the most common cause of non-syndromic deafness. GJB2 is thought to be involved in noise-induced hearing loss (NIHL). However, the role of Cx26 in NIHL is still obscure. To explore the association between Cx26 and NIHL, we established a Cx26 knockdown (KD) mouse model by conditional knockdown of Cx26 at postnatal day 18 (P18), and then we observed the auditory threshold and morphologic changes in these mice with or without noise exposure. The Cx26 KD mice did not exhibit substantial hearing loss and hair cell degeneration, while the Cx26 KD mice with acoustic trauma experienced higher hearing loss than simple noise exposure siblings and nearly had no recovery. Additionally, extensive outer hair cell loss and more severe destruction of the basal organ of Corti were observed in Cx26 KD mice after noise exposure. These data indicate that reduced Cx26 expression in the mature mouse cochlea may increase susceptibility to noise-induced hearing loss and facilitate the cell degeneration in the organ of Corti.  相似文献   

11.
The auditory system is a fascinating sensory organ that overall, converts sound signals to electrical signals of the nervous system. Initially, sound energy is converted to mechanical energy via amplification processes in the middle ear, followed by transduction of mechanical movements of the oval window into electrochemical signals in the cochlear hair cells, and finally, neural signals travel to the central auditory system, via the auditory division of the 8th cranial nerve. The majority of people above 60 years have some form of age-related hearing loss, also known as presbycusis. However, the biological mechanisms of presbycusis are complex and not yet fully delineated. In the present article, we highlight ion channels and transport proteins, which are integral for the proper functioning of the auditory system, facilitating the diffusion of various ions across auditory structures for signal transduction and processing. Like most other physiological systems, hearing abilities decline with age, hence, it is imperative to fully understand inner ear aging changes, so ion channel functions should be further investigated in the aging cochlea. In this review article, we discuss key various ion channels in the auditory system and how their functions change with age. Understanding the roles of ion channels in auditory processing could enhance the development of potential biotherapies for age-related hearing loss.  相似文献   

12.
This review aims to provide a conceptual and theoretical overview of the association between gut dysbiosis and hearing loss. Hearing loss is a global health issue; the World Health Organisation (WHO) estimates that 2.5 billion people will be living with some degree of hearing loss by 2050. The aetiology of sensorineural hearing loss (SNHL) is complex and multifactorial, arising from congenital and acquired causes. Recent evidence suggests that impaired gut health may also be a risk factor for SNHL. Inflammatory bowel disease (IBD), type 2 diabetes, diet-induced obesity (DIO), and high-fat diet (HFD) all show links to hearing loss. Previous studies have shown that a HFD can result in microangiopathy, impaired insulin signalling, and oxidative stress in the inner ear. A HFD can also induce pathological shifts in gut microbiota and affect intestinal barrier (IB) integrity, leading to a leaky gut. A leaky gut can result in chronic systemic inflammation, which may affect extraintestinal organs. Here, we postulate that changes in gut microbiota resulting from a chronic HFD and DIO may cause a systemic inflammatory response that can compromise the permeability of the blood–labyrinth barrier (BLB) in the inner ear, thus inducing cochlear inflammation and hearing deficits.  相似文献   

13.
Recent studies have identified sex-differences in auditory physiology and in the susceptibility to noise-induced hearing loss (NIHL). We hypothesize that 17β-estradiol (E2), a known modulator of auditory physiology, may underpin sex-differences in the response to noise trauma. Here, we gonadectomized B6CBAF1/J mice and used a combination of electrophysiological and histological techniques to study the effects of estrogen replacement on peripheral auditory physiology in the absence of noise exposure and on protection from NIHL. Functional analysis of auditory physiology in gonadectomized female mice revealed that E2-treatment modulated the peripheral response to sound in the absence of changes to the endocochlear potential compared to vehicle-treatment. E2-replacement in gonadectomized female mice protected against hearing loss following permanent threshold shift (PTS)- and temporary threshold shift (TTS)-inducing noise exposures. Histological analysis of the cochlear tissue revealed that E2-replacement mitigated outer hair cell loss and cochlear synaptopathy following noise exposure compared to vehicle-treatment. Lastly, using fluorescent in situ hybridization, we demonstrate co-localization of estrogen receptor-2 with type-1C, high threshold spiral ganglion neurons, suggesting that the observed protection from cochlear synaptopathy may occur through E2-mediated preservation of these neurons. Taken together, these data indicate the estrogen signaling pathways may be harnessed for the prevention and treatment of NIHL.  相似文献   

14.
Hearing loss affects many people worldwide and occurs often as a result of age, ototoxic drugs and/or excessive noise exposure. With a growing number of elderly people, the number of people suffering from hearing loss will also increase in the future. Despite the high number of affected people, for most patients there is no curative therapy for hearing loss and hearing aids or cochlea implants remain the only option. Important treatment approaches for hearing loss include the development of regenerative therapies or the inhibition of cell death/promotion of cell survival pathways. The mammalian target of rapamycin (mTOR) pathway is a central regulator of cell growth, is involved in cell survival, and has been shown to be implicated in many age-related diseases. In the inner ear, mTOR signaling has also started to gain attention recently. In this review, we will emphasize recent discoveries of mTOR signaling in the inner ear and discuss implications for possible treatments for hearing restoration.  相似文献   

15.
Hereditary hearing loss (HHL) is a common genetic disorder accounting for at least 60% of pre-lingual deafness in children, of which 70% is inherited in an autosomal recessive pattern. The long tradition of consanguinity among the Qatari population has increased the prevalence of HHL, which negatively impacts the quality of life. Here, we functionally validated the pathogenicity of the c.178G>C, p.E60Q mutation in the MYO6 gene, which was detected previously in a Qatari HHL family, using cellular and animal models. In vitro analysis was conducted in HeLa cells transiently transfected with plasmids carrying MYO6WT or MYO6p.E60Q, and a zebrafish model was generated to characterize the in vivo phenotype. Cells transfected with MYO6WT showed higher expression of MYO6 in the plasma membrane and increased ATPase activity. Modeling the human MYO6 variants in zebrafish resulted in severe otic defects. At 72 h post-injection, MYO6p.E60Q embryos demonstrated alterations in the sizes of the saccule and utricle. Additionally, zebrafish with MYO6p.E60Q displayed super-coiled and bent hair bundles in otic hair cells when compared to control and MYO6WT embryos. In conclusion, our cellular and animal models add support to the in silico prediction that the p.E60Q missense variant is pathogenic and damaging to the protein. Since the c.178G>C MYO6 variant has a 0.5% allele frequency in the Qatari population, about 400 times higher than in other populations, it could contribute to explaining the high prevalence of hearing impairment in Qatar.  相似文献   

16.
Screening pathogenic variants in the SLC26A4 gene is an important part of molecular genetic testing for hearing loss (HL) since they are one of the common causes of hereditary HL in many populations. However, a large size of the SLC26A4 gene (20 coding exons) predetermines the difficulties of its complete mutational analysis, especially in large samples of patients. In addition, the regional or ethno-specific prevalence of SLC26A4 pathogenic variants has not yet been fully elucidated, except variants c.919-2A>G and c.2168A>G (p.His723Arg), which have been proven to be most common in Asian populations. We explored the distribution of currently known pathogenic and likely pathogenic (PLP) variants across the SLC26A4 gene sequence presented in the Deafness Variation Database for the selection of potential diagnostically important parts of this gene. As a result of this bioinformatic analysis, we found that molecular testing ten SLC26A4 exons (4, 6, 10, 11, 13–17 and 19) with flanking intronic regions can provide a diagnostic rate of 61.9% for all PLP variants in the SLC26A4 gene. The primary sequencing of these SLC26A4 regions may be applied as an initial effective diagnostic testing in samples of patients of unknown ethnicity or as a subsequent step after the targeted testing of already-known ethno- or region-specific pathogenic SLC26A4 variants.  相似文献   

17.
Age-related hearing loss (ARHL) is the most common sensory disorder among older people, and yet, the treatment options are limited to medical devices such as hearing aids and cochlear implants. The high prevalence of ARHL mandates the development of treatment strategies that can prevent or rescue age-related cochlear degeneration. In this study, we investigated a novel pharmacological strategy based on inhibition of the adenosine A2A receptor (A2AR) in middle aged C57BL/6 mice prone to early onset ARHL. C57BL/6J mice were treated with weekly istradefylline (A2AR antagonist; 1 mg/kg) injections from 6 to 12 months of age. Auditory function was assessed using auditory brainstem responses (ABR) to tone pips (4–32 kHz). ABR thresholds and suprathreshold responses (wave I amplitudes and latencies) were evaluated at 6, 9, and 12 months of age. Functional outcomes were correlated with quantitative histological assessments of sensory hair cells. Cognitive function was assessed using the Morris water maze and the novel object recognition test, and the zero maze test was used to assess anxiety-like behaviour. Weekly injections of istradefylline attenuated ABR threshold shifts by approximately 20 dB at mid to high frequencies (16–32 kHz) but did not improve ABR suprathreshold responses. Istradefylline treatment improved hair cell survival in a turn-dependent manner, whilst the cognitive function was unaffected by istradefylline treatment. This study presents the first evidence for the rescue potential of istradefylline in ARHL and highlights the role of A2AR in development of age-related cochlear degeneration.  相似文献   

18.
The identification of pathogenic variants in monogenic diseases has been of interest to researchers and clinicians for several decades. However, for inherited diseases with extremely high genetic heterogeneity, such as hearing loss and retinal dystrophies, establishing a molecular diagnosis requires an enormous effort. In this review, we use these two genetic conditions as examples to describe the initial molecular genetic identification approaches, as performed since the early 90s, and subsequent improvements and refinements introduced over the years. Next, the history of DNA sequencing from conventional Sanger sequencing to high-throughput massive parallel sequencing, a.k.a. next-generation sequencing, is outlined, including their advantages and limitations and their impact on identifying the remaining genetic defects. Moreover, the development of recent technologies, also coined “third-generation” sequencing, is reviewed, which holds the promise to overcome these limitations. Furthermore, we outline the importance and complexity of variant interpretation in clinical diagnostic settings concerning the massive number of different variants identified by these methods. Finally, we briefly mention the development of novel approaches such as optical mapping and multiomics, which can help to further identify genetic defects in the near future.  相似文献   

19.
Umbilical cord-derived mesenchymal stromal cells (UCMSCs) have potential applications in regenerative medicine. UCMSCs have been demonstrated to repair tissue damage in many inflammatory and degenerative diseases. We have previously shown that UCMSC exosomes reduce nerve injury-induced pain in rats. In this study, we characterized UCMSC exosomes using RNA sequencing and proteomic analyses and investigated their protective effects on cisplatin-induced hearing loss in mice. Two independent experiments were designed to investigate the protective effects on cisplatin-induced hearing loss in mice: (i) chronic intraperitoneal cisplatin administration (4 mg/kg) once per day for 5 consecutive days and intraperitoneal UCMSC exosome (1.2 μg/μL) injection at the same time point; and (ii) UCMSC exosome (1.2 μg/μL) injection through a round window niche 3 days after chronic cisplatin administration. Our data suggest that UCMSC exosomes exert protective effects in vivo. The post-traumatic administration of UCMSC exosomes significantly improved hearing loss and rescued the loss of cochlear hair cells in mice receiving chronic cisplatin injection. Neuropathological gene panel analyses further revealed the UCMSC exosomes treatment led to beneficial changes in the expression levels of many genes in the cochlear tissues of cisplatin-injected mice. In conclusion, UCMSC exosomes exerted protective effects in treating ototoxicity-induced hearing loss by promoting tissue remodeling and repair.  相似文献   

20.
Combining aminoglycosides and loop diuretics often serves as an effective ototoxic approach to deafen experimental animals. The treatment results in rapid hair cell loss with extended macrophage presence in the cochlea, creating a sterile inflammatory environment. Although the early recruitment of macrophages is typically neuroprotective, the delay in the resolution of macrophage activity can be a complication if the damaged cochlea is used as a model to study subsequent therapeutic strategies. Here, we applied a high dose combination of systemic gentamicin and furosemide in C57 BL/6 and CBA/CaJ mice and studied the ototoxic consequences in the cochlea, including hair cell survival, ribbon synaptic integrity, and macrophage activation up to 15-day posttreatment. The activity of macrophages in the basilar membrane was correlated to the severity of cochlear damage, particularly the hair cell damage. Comparatively, C57 BL/6 cochleae were more vulnerable to the ototoxic challenge with escalated macrophage activation. In addition, the ribbon synaptic deterioration was disproportionately limited when compared to the degree of outer hair cell loss in CBA/CaJ mice. The innate and differential otoprotection in CBA/CaJ mice appears to be associated with the rapid activation of cochlear macrophages and a certain level of synaptogenesis after the combined gentamicin and furosemide treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号