共查询到8条相似文献,搜索用时 0 毫秒
1.
2.
The Jun N-terminal kinase (JNK) pathway is an evolutionary conserved kinase cascade best known for its roles during stress-induced apoptosis and tumor progression. Recent findings, however, have identified new roles for this pleiotropic pathway in stem cells during regenerative responses and in cellular plasticity. Here, we provide an overview of recent findings about the new roles of JNK signaling in stem cell biology using two well-established Drosophila models: the testis and the intestine. We highlight the pathway’s roles in processes such as proliferation, death, self-renewal and reprogramming, and discuss the known parallels between flies and mammals. 相似文献
3.
Calogera Pisano Sonia Terriaca Maria Giovanna Scioli Paolo Nardi Claudia Altieri Augusto Orlandi Giovanni Ruvolo Carmela Rita Balistreri 《International journal of molecular sciences》2022,23(18)
The pathobiology of ascending aorta aneurysms (AAA) onset and progression is not well understood and only partially characterized. AAA are also complicated in case of bicuspid aorta valve (BAV) anatomy. There is emerging evidence about the crucial role of endothelium-related pathways, which show in AAA an altered expression and function. Here, we examined the involvement of ERG-related pathways in the differential progression of disease in aortic tissues from patients having a BAV or tricuspid aorta valve (TAV) with or without AAA. Our findings identified ERG as a novel endothelial-specific regulator of TGF-β-SMAD, Notch, and NO pathways, by modulating a differential fibrotic or calcified AAA progression in BAV and TAV aortas. We provided evidence that calcification is correlated to different ERG expression (as gene and protein), which appears to be under control of Notch signaling. The latter, when increased, associated with an early calcification in aortas with BAV valve and aneurysmatic, was demonstrated to favor the progression versus severe complications, i.e., dissection or rupture. In TAV aneurysmatic aortas, ERG appeared to modulate fibrosis. Therefore, we proposed that ERG may represent a sensitive tissue biomarker to monitor AAA progression and a target to develop therapeutic strategies and influence surgical procedures. 相似文献
4.
5.
6.
7.
8.
Katarzyna Dbrowska Katarzyna Skowroska Mariusz Popek Jan Albrecht Magdalena Zieliska 《International journal of molecular sciences》2021,22(20)
Ammonia toxicity in the brain primarily affects astrocytes via a mechanism in which oxidative stress (OS), is coupled to the imbalance between glutamatergic and GABAergic transmission. Ammonia also downregulates the astrocytic N system transporter SN1 that controls glutamine supply from astrocytes to neurons for the replenishment of both neurotransmitters. Here, we tested the hypothesis that activation of Nrf2 is the process that links ammonia-induced OS formation in astrocytes to downregulation and inactivation of SN1 and that it may involve the formation of a complex between Nrf2 and Sp1. Treatment of cultured cortical mouse astrocytes with ammonia (5 mM NH4Cl for 24 h) evoked Nrf2 nuclear translocation, increased its activity in a p38 MAPK pathway-dependent manner, and enhanced Nrf2 binding to Slc38a3 promoter. Nrf2 silencing increased SN1 mRNA and protein level without influencing astrocytic [3H]glutamine transport. Ammonia decreased SN1 expression in Nrf2 siRNA treated astrocytes and reduced [3H]glutamine uptake. In addition, while Nrf2 formed a complex with Sp1 in ammonia-treated astrocytes less efficiently than in control cells, treatment of astrocytes with hybrid-mode inactivated Sp1-Nrf2 complex (Nrf2 silencing + pharmacological inhibition of Sp1) did not affect SN1 protein level in ammonia-treated astrocytes. In summary, the results document that SN1 transporter dysregulation by ammonia in astrocytes involves activation of Nrf2 but does not require the formation of the Sp1-Nrf2 complex. 相似文献