共查询到20条相似文献,搜索用时 15 毫秒
1.
George Anderson Annalucia Carbone Gianluigi Mazzoccoli 《International journal of molecular sciences》2021,22(4)
The metabolism of tryptophan is intimately associated with the differential regulation of diverse physiological processes, including in the regulation of responses to severe acute respiratory syndrome, coronavirus-2 (SARS-CoV-2) infection that underpins the COVID-19 pandemic. Two important products of tryptophan metabolism, viz kynurenine and interleukin (IL)4-inducible1 (IL41)-driven indole 3 pyruvate (I3P), activate the aryl hydrocarbon receptor (AhR), thereby altering the nature of immune responses to SARS-CoV-2 infection. AhR activation dysregulates the initial pro-inflammatory cytokines production driven by neutrophils, macrophages, and mast cells, whilst AhR activation suppresses the endogenous antiviral responses of natural killer cells and CD8+ T cells. Such immune responses become further dysregulated by the increased and prolonged pro-inflammatory cytokine suppression of pineal melatonin production coupled to increased gut dysbiosis and gut permeability. The suppression of pineal melatonin and gut microbiome-derived butyrate, coupled to an increase in circulating lipopolysaccharide (LPS) further dysregulates the immune response. The AhR mediates its effects via alterations in the regulation of mitochondrial function in immune cells. The increased risk of severe/fatal SARS-CoV-2 infection by high risk conditions, such as elderly age, obesity, and diabetes are mediated by these conditions having expression levels of melatonin, AhR, butyrate, and LPS that are closer to those driven by SARS-CoV-2 infection. This has a number of future research and treatment implications, including the utilization of melatonin and nutraceuticals that inhibit the AhR, including the polyphenols, epigallocatechin gallate (EGCG), and resveratrol. 相似文献
2.
Young Soo Kim Hwan-Suck Chung Sang Gyun Noh Bonggi Lee Hae Young Chung Jang-Gi Choi 《International journal of molecular sciences》2021,22(16)
The coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite the development of vaccines, the emergence of SARS-CoV-2 variants and the absence of effective therapeutics demand the continual investigation of COVID-19. Natural products containing active ingredients may be good therapeutic candidates. Here, we investigated the effectiveness of geraniin, the main ingredient in medical plants Elaeocarpus sylvestris var. ellipticus and Nephelium lappaceum, for treating COVID-19. The SARS-CoV-2 spike protein binds to the human angiotensin-converting enzyme 2 (hACE2) receptor to initiate virus entry into cells; viral entry may be an important target of COVID-19 therapeutics. Geraniin was found to effectively block the binding between the SARS-CoV-2 spike protein and hACE2 receptor in competitive enzyme-linked immunosorbent assay, suggesting that geraniin might inhibit the entry of SARS-CoV-2 into human epithelial cells. Geraniin also demonstrated a high affinity to both proteins despite a relatively lower equilibrium dissociation constant (KD) for the spike protein (0.63 μM) than hACE2 receptor (1.12 μM), according to biolayer interferometry-based analysis. In silico analysis indicated geraniin’s interaction with the residues functionally important in the binding between the two proteins. Thus, geraniin is a promising therapeutic agent for COVID-19 by blocking SARS-CoV-2’s entry into human cells. 相似文献
3.
4.
Qiaoqiao Qu Pengfei Hao Wang Xu Letian Li Yuhang Jiang Zhiqiang Xu Jing Chen Zihan Gao Zhaoxia Pang Ningyi Jin Chang Li 《International journal of molecular sciences》2022,23(22)
The pandemic of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed great threat to the world in many aspects. There is an urgent requirement for an effective preventive vaccine. The receptor binding domain (RBD), located on the spike (S) gene, is responsible for binding to the angiotensin-converting enzyme 2 (ACE2) receptor of host cells. The RBD protein is an effective and safe antigen candidate. The six-helix bundle (6HB) “molecular clamp” is a novel thermally-stable trimerization domain derived from a human immunodeficiency virus (HIV) gp41 protein segment. We selected the baculovirus system to fuse and express the RBD protein and 6HB for imitating the natural trimeric structure of RBD, named RBD-6HB. Recombinant RBD-6HB was successfully obtained from the cell culture supernatant and purified to high homogeneity. The purity of the final protein preparation was more than 97%. The results showed that the protein was identified as a homogeneous polymer. Further studies showed that the RBD-6HB protein combined with AL/CpG adjuvant could stimulate animals to produce sustained high-level antibodies and establish an effective protective barrier to protect mice from challenges. Our findings highlight the importance of trimerized SARS-CoV-2 S protein RBD in designing SARS-CoV-2 vaccines and provide a rationale for developing a protective vaccine through the induction of antibodies against the RBD domain. 相似文献
5.
The outbreak of the coronavirus disease 2019 (COVID-19) began at the end of 2019. COVID-19 is caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and patients with COVID-19 may exhibit poor clinical outcomes. Some patients with severe COVID-19 experience cytokine release syndrome (CRS) or a cytokine storm—elevated levels of hyperactivated immune cells—and circulating pro-inflammatory cytokines, including interleukin (IL)-1β and IL-18. This severe inflammatory response can lead to organ damage/failure and even death. The inflammasome is an intracellular immune complex that is responsible for the secretion of IL-1β and IL-18 in various human diseases. Recently, there has been a growing number of studies revealing a link between the inflammasome and COVID-19. Therefore, this article summarizes the current literature regarding the inflammasome complex and COVID-19. 相似文献
6.
Tomoki Nakayoshi Koichi Kato Eiji Kurimoto Akifumi Oda 《International journal of molecular sciences》2021,22(18)
Recently, inhibitors of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) have been proposed as potential therapeutic agents for COVID-19. Studying effects of amino acid mutations in the conformation of drug targets is necessary for anticipating drug resistance. In this study, with the structure of the SARS-CoV-2 Mpro complexed with a non-covalent inhibitor, we performed molecular dynamics (MD) simulations to determine the conformation of the complex when single amino acid residue in the active site is mutated. As a model of amino acid mutation, we constructed mutant proteins with one residue in the active site mutated to alanine. This method is called virtual alanine scan. The results of the MD simulations showed that the conformation and configuration of the ligand was changed for mutants H163A and E166A, although the structure of the whole protein and of the catalytic dyad did not change significantly, suggesting that mutations in His163 and Glu166 may be linked to drug resistance. 相似文献
7.
Stanislav R. Kurpe Sergei Yu. Grishin Alexey K. Surin Alexander V. Panfilov Mikhail V. Slizen Saikat D. Chowdhury Oxana V. Galzitskaya 《International journal of molecular sciences》2020,21(24)
At present, much attention is paid to the use of antimicrobial peptides (AMPs) of natural and artificial origin to combat pathogens. AMPs have several points that determine their biological activity. We analyzed the structural properties of AMPs, as well as described their mechanism of action and impact on pathogenic bacteria and viruses. Recently published data on the development of new AMP drugs based on a combination of molecular design and genetic engineering approaches are presented. In this article, we have focused on information on the amyloidogenic properties of AMP. This review examines AMP development strategies from the perspective of the current high prevalence of antibiotic-resistant bacteria, and the potential prospects and challenges of using AMPs against infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). 相似文献
8.
Young Soo Kim Eun-Bin Kwon Buyun Kim Hwan-Suck Chung Garam Choi Yeoun-Hee Kim Jang-Gi Choi 《International journal of molecular sciences》2022,23(20)
There has been an immense effort by global pharmaceutical companies to develop anti-COVID-19 drugs, including small molecule-based RNA replication inhibitors via drug repositioning and antibody-based spike protein blockers related to cell entry by SARS-CoV-2. However, several limitations to their clinical use have emerged in addition to a lack of progress in the development of small molecule-based cell entry inhibitors from natural products. In this study, we tested the effectiveness of kuwanon C (KC), which has mainly been researched using in silico docking simulation and can serve as an effective building block for developing anti-COVID-19 drugs, in blocking the spike S1 RBD:ACE2 receptor interaction. KC is a natural product derived from Morus alba L., commonly known as mulberry, which has known antiviral efficacy. Molecular interaction studies using competitive ELISA and the BLItz system revealed that KC targets both the spike S1 RBD and the ACE2 receptor, successfully disrupting their interaction, as supported by the in silico docking simulation. Furthermore, we established a mechanism of action by observing how KC prevents the infection of SARS-CoV-2 spike pseudotyped virus in ACE2/TPRSS2-overexpressing HEK293T cells. Finally, we demonstrated that KC inhibits clinical isolates of SARS-CoV-2 in Vero cells. Future combinations of small molecule-based cell entry inhibitors, such as KC, with the currently prescribed RNA replication inhibitors are anticipated to significantly enhance the efficacy of COVID-19 therapies. 相似文献
9.
Samar Rezq Alexandra M. Huffman Jelina Basnet Licy L. Yanes Cardozo Damian G. Romero 《International journal of molecular sciences》2021,22(18)
The susceptibility and the severity of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are associated with hyperandrogenism, obesity, and preexisting pulmonary, metabolic, renal, and cardiac conditions. Polycystic ovary syndrome (PCOS), the most common endocrine disorder in premenopausal women, is associated with obesity, hyperandrogenism, and cardiometabolic dysregulations. We analyzed cardiac, renal, circulatory, and urinary SARS-CoV-2 viral entry proteins (ACE2, TMPRSS2, TMPRSS4, furin, cathepsin L, and ADAM17) and androgen receptor (AR) expression, in a peripubertal androgen exposure model of PCOS. Peripubertal female mice were treated with dihydrotestosterone (DHT) and low (LFD) or high (HFD) fat diet for 90 days. HFD exacerbated DHT-induced increase in body weight, fat mass, and cardiac and renal hypertrophy. In the heart, DHT upregulated AR protein in both LFD and HFD, ACE2 in HFD, and ADAM17 in LFD. In the kidney, AR protein expression was upregulated by both DHT and HFD. Moreover, ACE2 and ADAM17 were upregulated by DHT in both diets. Renal TMPRSS2, furin, and cathepsin L were upregulated by DHT and differentially modulated by the diet. DHT upregulated urinary ACE2 in both diets, while neither treatment modified serum ACE2. Renal AR mRNA expression positively correlated with Ace2, Tmprss2, furin, cathepsin L, and ADAM17. Our findings suggest that women with PCOS could be a population with a high risk of COVID-19-associated cardiac and renal complications. Furthermore, our study suggests that weight loss by lifestyle modifications (i.e., diet) could potentially mitigate COVID-19-associated deleterious cardiorenal outcomes in women with PCOS. 相似文献
11.
Pei-Pei Pan Qi-Tao Zhan Fang Le Ying-Ming Zheng Fan Jin 《International journal of molecular sciences》2013,14(10):21071-21086
According to the World Health Organization, infertility, associated with metabolic syndrome, has become a global issue with a 10%–20% incidence worldwide. An accumulating body of evidence has shown that the renin–angiotensin system is involved in the fertility problems observed in some populations. Moreover, alterations in the expression of angiotensin-converting enzyme-1, angiotensin-converting enzyme-2, and angiotensin-converting enzyme-3 might be one of the most important mechanisms underlying both female and male infertility. However, as a pseudogene in humans, further studies are needed to explore whether the abnormal angiotensin-converting enzyme-3 gene could result in the problems of human reproduction. In this review, the relationship between angiotensin-converting enzymes and fertile ability is summarized, and a new procedure for the treatment of infertility is discussed. 相似文献
12.
Qiyue Ding Nataliia V. Shults Sergiy G. Gychka Brent T. Harris Yuichiro J. Suzuki 《International journal of molecular sciences》2021,22(4)
Alzheimer’s disease is a chronic neurodegenerative disorder and represents the main cause of dementia globally. Currently, the world is suffering from the coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus that uses angiotensin-converting enzyme 2 (ACE2) as a receptor to enter the host cells. In COVID-19, neurological manifestations have been reported to occur. The present study demonstrates that the protein expression level of ACE2 is upregulated in the brain of patients with Alzheimer’s disease. The increased ACE2 expression is not age-dependent, suggesting the direct relationship between Alzheimer’s disease and ACE2 expression. Oxidative stress has been implicated in the pathogenesis of Alzheimer’s disease, and brains with the disease examined in this study also exhibited higher carbonylated proteins, as well as an increased thiol oxidation state of peroxiredoxin 6 (Prx6). A moderate positive correlation was found between the increased ACE2 protein expression and oxidative stress in brains with Alzheimer’s disease. In summary, the present study reveals the relationships between Alzheimer’s disease and ACE2, the receptor for SARS-CoV-2. These results suggest the importance of carefully monitoring patients with both Alzheimer’s disease and COVID-19 in order to identify higher viral loads in the brain and long-term adverse neurological consequences. 相似文献
13.
Alexandra M. Huffman Samar Rezq Jelina Basnet Licy L. Yanes Cardozo Damian G. Romero 《International journal of molecular sciences》2021,22(9)
SARS-CoV-2, the causative agent of COVID-19, infects host cells using the angiotensin I converting enzyme 2 (ACE2) as its receptor after priming by host proteases, including TMPRSS2. COVID-19 affects multiple organ systems, and male patients suffer increased severity and mortality. Polycystic Ovary Syndrome (PCOS) is the most common endocrine disorder in reproductive-age women and is characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovarian morphology. PCOS is associated with obesity and cardiometabolic comorbidities, both being risk factors associated with severe COVID-19 pathology. We hypothesize that elevated androgens in PCOS regulate SARS-CoV-2 entry proteins in multiple tissues increasing the risk for this population. Female mice were treated with dihydrotestosterone (DHT) for 90 days. Body composition was measured by EchoMRI. Fasting glucose was determined by an enzymatic method. mRNA and protein levels of ACE2, Tmprss2, Cathepsin L, Furin, Tmprss4, and Adam17 were quantified by RT-qPCR, Western-blot, or ELISA in tissues, serum, and urine. DHT treatment increased body weight, fat and lean mass, and fasting glucose. Ace2 mRNA was upregulated in the lung, cecum, heart, and kidney, while downregulated in the brain by DHT. ACE2 protein was upregulated by DHT in the small intestine, heart, and kidney. The SARS-CoV-2 priming proteases Tmprss2, Cathepsin L, and Furin mRNA were upregulated by DHT in the kidney. ACE2 sheddase Adam17 mRNA was upregulated by DHT in the kidney, which corresponded with increased urinary ACE2 in DHT treated mice. Our results highlight the potential for increased cardiac, renal, and gastrointestinal dysfunction in PCOS women with COVID-19. 相似文献
14.
Rafael Franco Alejandro Lillo Rafael Rivas-Santisteban Ana I. Rodríguez-Prez Irene Reyes-Resina Jos L. Labandeira-García Gemma Navarro 《International journal of molecular sciences》2020,21(24)
Angiotensin-converting enzyme 2 (ACE2) is a membrane peptidase and a component of the renin-angiotensin system (RAS) that has been found in cells of all organs, including the lungs. While ACE2 has been identified as the receptor for severe acute respiratory syndrome (SARS) coronaviruses, the mechanism underlying cell entry remains unknown. Human immunodeficiency virus infects target cells via CXC chemokine receptor 4 (CXCR4)-mediated endocytosis. Furthermore, CXCR4 interacts with dipeptidyl peptidase-4 (CD26/DPPIV), an enzyme that cleaves CXCL12/SDF-1, which is the chemokine that activates this receptor. By analogy, we hypothesized that ACE2 might also be capable of interactions with RAS-associated G-protein coupled receptors. Using resonance energy transfer and cAMP and mitogen-activated protein kinase signaling assays, we found that human ACE2 interacts with RAS-related receptors, namely the angiotensin II type 1 receptor (AT1R), the angiotensin II type 2 receptor (AT2R), and the MAS1 oncogene receptor (MasR). Although these interactions led to various alterations of signal transduction, but, more importantly, ligand binding to AT1R resulted in the downregulation of ACE2 cell surface expression, while ligand binding to AT2R, but not to MasR, resulted in upregulation of ACE2 cell surface expression. Proximity ligation assays performed in situ revealed macromolecular complexes containing ACE2 and AT1R, AT2R or MasR in adult but not fetal mouse lung tissue. These findings highlight the relevance of RAS in SARS-CoV-2 infection and the role of ACE2-containing complexes as potential therapeutic targets. 相似文献
15.
Rajender Kumar Natarajan Arul Murugan Vaibhav Srivastava 《International journal of molecular sciences》2022,23(6)
The new variant of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), Omicron, has been quickly spreading in many countries worldwide. Compared to the original virus, Omicron is characterized by several mutations in its genomic region, including the spike protein’s receptor-binding domain (RBD). We have computationally investigated the interaction between the RBD of both the wild type and Omicron variant of SARS-CoV-2 with the human angiotensin-converting enzyme 2 (hACE2) receptor using molecular dynamics and molecular mechanics-generalized Born surface area (MM-GBSA)-based binding free energy calculations. The mode of the interaction between Omicron’s RBD with the hACE2 receptor is similar to the original SARS-CoV-2 RBD except for a few key differences. The binding free energy difference shows that the spike protein of Omicron has an increased affinity for the hACE2 receptor. The mutated residues in the RBD showed strong interactions with a few amino acid residues of hACE2. More specifically, strong electrostatic interactions (salt bridges) and hydrogen bonding were observed between R493 and R498 residues of the Omicron RBD with D30/E35 and D38 residues of the hACE2, respectively. Other mutated amino acids in the Omicron RBD, e.g., S496 and H505, also exhibited hydrogen bonding with the hACE2 receptor. A pi-stacking interaction was also observed between tyrosine residues (RBD-Tyr501: hACE2-Tyr41) in the complex, which contributes majorly to the binding free energies and suggests that this is one of the key interactions stabilizing the formation of the complex. The resulting structural insights into the RBD:hACE2 complex, the binding mode information within it, and residue-wise contributions to the free energy provide insight into the increased transmissibility of Omicron and pave the way to design and optimize novel antiviral agents. 相似文献
16.
17.
Ju-Pi Li Kang-Hsi Wu Wan-Ru Chao Yi-Ju Lee Shun-Fa Yang Yu-Hua Chao 《International journal of molecular sciences》2022,23(15)
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been a major public health challenge worldwide. Owing to the emergence of novel viral variants, the risks of reinfections and vaccine breakthrough infections has increased considerably despite a mass of vaccination. The formation of cytokine storm, which subsequently leads to acute respiratory distress syndrome, is the major cause of mortality in patients with COVID-19. Based on results of preclinical animal models and clinical trials of acute lung injury and acute respiratory distress syndrome, the immunomodulatory, tissue repair, and antiviral properties of MSCs highlight their potential to treat COVID-19. This review article summarizes the potential mechanisms and outcomes of MSC therapy in COVID-19, along with the pathogenesis of the SARS-CoV-2 infection. The properties of MSCs and lessons from preclinical animal models of acute lung injury are mentioned ahead. Important issues related to the use of MSCs in COVID-19 are discussed finally. 相似文献
18.
Krzysztof Miczuk Marta Baranowska-Kuczko Anna Krzyewska Eberhard Schlicker Barbara Malinowska 《International journal of molecular sciences》2022,23(11)
This review is dedicated to the cross-talk between the (endo)cannabinoid and renin angiotensin systems (RAS). Activation of AT1 receptors (AT1Rs) by angiotensin II (Ang II) can release endocannabinoids that, by acting at cannabinoid CB1 receptors (CB1Rs), modify the response to AT1R stimulation. CB1R blockade may enhance AT1R-mediated responses (mainly vasoconstrictor effects) or reduce them (mainly central nervous system-mediated effects). The final effects depend on whether stimulation of CB1Rs and AT1Rs induces opposite or the same effects. Second, CB1R blockade may diminish AT1R levels. Third, phytocannabinoids modulate angiotensin-converting enzyme-2. Additional studies are required to clarify (1) the existence of a cross-talk between the protective axis of the RAS (Ang II—AT2 receptor system or angiotensin 1-7—Mas receptor system) with components of the endocannabinoid system, (2) the influence of Ang II on constituents of the endocannabinoid system and (3) the (patho)physiological significance of AT1R-CB1R heteromerization. As a therapeutic consequence, CB1R antagonists may influence effects elicited by the activation or blockade of the RAS; phytocannabinoids may be useful as adjuvant therapy against COVID-19; single drugs acting on the (endo)cannabinoid system (cannabidiol) and the RAS (telmisartan) may show pharmacokinetic interactions since they are substrates of the same metabolizing enzyme of the transport mechanism. 相似文献
19.
Recently, we have experienced a serious pandemic. Despite significant technological advances in molecular technologies, it is very challenging to slow down the infection spread. It appeared that due to globalization, SARS-CoV-2 spread easily and adapted to new environments or geographical or weather zones. Additionally, new variants are emerging that show different infection potential and clinical outcomes. On the other hand, we have some experience with other pandemics and some solutions in virus elimination that could be adapted. This is of high importance since, as the latest reports demonstrate, vaccine technology might not follow the new, mutated virus outbreaks. Thus, identification of novel strategies and markers or diagnostic methods is highly necessary. For this reason, we present some of the latest views on SARS-CoV-2/COVID-19 therapeutic strategies and raise a solution based on miRNA. We believe that in the face of the rapidly increasing global situation and based on analogical studies of other viruses, the possibility of using the biological potential of miRNA technology is very promising. It could be used as a promising diagnostic and prognostic factor, as well as a therapeutic target and tool. 相似文献
20.
Despite progress in understanding the pathophysiology of acute lung damage, currently approved treatment possibilities are limited to lung-protective ventilation, prone positioning, and supportive interventions. Various pharmacological approaches have also been tested, with neuromuscular blockers and corticosteroids considered as the most promising. However, inhibitors of phosphodiesterases (PDEs) also exert a broad spectrum of favorable effects potentially beneficial in acute lung damage. This article reviews pharmacological action and therapeutical potential of nonselective and selective PDE inhibitors and summarizes the results from available studies focused on the use of PDE inhibitors in animal models and clinical studies, including their adverse effects. The data suggest that xanthines as representatives of nonselective PDE inhibitors may reduce acute lung damage, and decrease mortality and length of hospital stay. Various (selective) PDE3, PDE4, and PDE5 inhibitors have also demonstrated stabilization of the pulmonary epithelial–endothelial barrier and reduction the sepsis- and inflammation-increased microvascular permeability, and suppression of the production of inflammatory mediators, which finally resulted in improved oxygenation and ventilatory parameters. However, the current lack of sufficient clinical evidence limits their recommendation for a broader use. A separate chapter focuses on involvement of cyclic adenosine monophosphate (cAMP) and PDE-related changes in its metabolism in association with coronavirus disease 2019 (COVID-19). The chapter illuminates perspectives of the use of PDE inhibitors as an add-on treatment based on actual experimental and clinical trials with preliminary data suggesting their potential benefit. 相似文献