首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
纯工质水平管内凝结换热研究进展   总被引:2,自引:0,他引:2  
相对于混合工质,纯工质(单一成分制冷剂)不存在温度滑移、系统泄漏时的成分变化等问题,在制冷设备中得到了广泛应用.研究纯工质水平管内凝结换热特性对其及其混合物在制冷、空调、热泵方面的应用具有重要意义.文章从理论和实验两个方面,综述了国外对纯工质在水平管内流动凝结换热的研究,分析了凝结换热关联式的适用性和局限性,并提出了进一步研究的建议.  相似文献   

2.
混合工质水平管内流动凝结换热研究进展   总被引:1,自引:0,他引:1  
从实验和模型两个方面,综述了国外对混合工质在水平光管和强化管内流动凝结换热的研究。对多种公开发表的混合工质凝结换热关联式的适用性和准确性进行了讨论。同时,指出了现有研究方法和研究内容的不足,以及应进一步深入研究之处。  相似文献   

3.
本文实验研究了R410A在水平内螺纹管内的流动凝结换热特性,分析了水力工况、测试管结构参数对管内制冷剂侧表面传热系数、压降的影响。结果表明:表面传热系数、压降均随着质量流速的增加、冷凝温度的降低而增大;虽然表面传热系数随着测试水Re的增加而减小,但测试水Re对压降的影响很小。利用单位压降表面传热系数对换热进行综合性能评价时发现,单位压降表面传热系数随着质量流速的增加而减小,随着冷凝温度的增大而增大。将实验数据与经典关联式的预测值进行对比,对于光滑管,除了Akers et al.关联式低估了实验数据,Shah关联式与Thome et al.关联式均高估了实验数据,并且Thome et al.关联式表现出最高的预测精度。而对于内螺纹强化管,Cavallini et al.关联式展现出最高的预测精度,而Koyama et al.关联式与Miyara et al.关联式均低估了实验数据。  相似文献   

4.
对3种管径(2mm,4mm和6mm)的水平细圆管管内流动凝结换热特性进行研究。采用通用CFD软件Fluent6.3中的Mixture模型,结合UDF编程对物理模型进行数值求解。数值计算结果表明,小尺寸条件下管内凝结换热的规律不同于常规尺寸管道。随着管径的逐渐减小,重力对凝结的影响逐渐减小,气液面切应力、液体表面张力的作用加强。细管凝结过程的局部换热系数远远大于Nusselt的理论解。  相似文献   

5.
本文在分析国内外有关文献的基础上,综述了非共沸混合工质水平管内流动沸腾换热研究的成果和现状,并对该领域进一步的研究提出了一些看法。  相似文献   

6.
7.
通过实验研究了R22在当量直径为0.952 mm水平不锈钢矩形管内的凝结换热过程。实验时的饱和温度为40~50℃、质量流速为200~800 kg/(m2 ? s)、干度为0~1。研究结果表明:R22的凝结换热系数随质量流速和干度的增大而增大,在较高干度区增大趋势更加明显,随饱和温度的增大凝结换热系数减小。然后将实验结果与三种已有换热关联式进行了对比,在与R22相比时发现,在相同实验工况下R152a的凝结换热系数大于R22的凝结换热系数。  相似文献   

8.
本文综述了国外在替代制冷剂管内冷凝换热方面的研究进展,包括各种替代制冷剂与原制冷剂的传热性能对比、润滑油对传热的影响、冷凝换热过程的强化。  相似文献   

9.
汽车空调制冷系统工质替代研究   总被引:3,自引:0,他引:3  
本文针对汽车空调制冷系统的特点,通过对制冷系统的模拟计算与分析,阐述了采用R22 替代R12 后对汽车空调制冷系统的制冷效果、传热性能、管道压降及系统匹配等方面产生的影响,得出了一些有益的结果,并提出了相应的改进措施  相似文献   

10.
具有不凝结气体存在的凝结换热研究   总被引:1,自引:0,他引:1  
介绍了不凝结气体对凝结换热的影响,提出了在自行复叠制冷系统中消除不凝结气体对凝结换热的影响的一种新方法,然后进行了有不凝性气体存在时的换热系数的计算及相关的试验研究。试验结果证明了新的方法使得自行复叠制冷系统中有不凝性气体存在时的凝结换热大大加强,换热系数已经接近或达到纯工质在相同状况下的换热系数。  相似文献   

11.
陈于  马麟  白羽林 《制冷》2014,(4):39-44
通过系统介绍水平管内凝结的气液两相流型,以及不同坐标形式的流型图,得出水平管内环状流、波状流和雾状流之间转换的判据。另外,列举了水平光滑管和内螺纹管内凝结换热的经验型关联式,为计算管内凝结换热提供依据。并提出了下一步研究工作的建议。  相似文献   

12.
水平管外二氧化碳膜状凝结传热分析   总被引:3,自引:0,他引:3  
综述了水平低翅片管外凝结传热的基本模型,阐述了二氧化碳制冷剂的物性特点,讨论了表面张力与凝液滞留角及二氧化碳管外凝结换热系数的关系,分析了翅片密度、环形翅片管尺寸对翅片效率、滞留角、凝结换热系数以及传热增强比的影响,优化了外翅片管的齿高与齿距,并求得相应的强化传热增强比.结果表明,对于根径为20mm的低翅片管,最佳翅片密度为每米435个翅片,最佳齿高为5.1mm,最佳齿距2.3mm.  相似文献   

13.
本文对2根不同孔径单管在饱和温度分别为0℃、5℃和10℃工况下进行水平管内R32蒸发换热的实验研究。采用热阻分离法得到管内制冷剂侧蒸发传热系数,以质量流量、饱和温度为影响因子,对实验结果进行单管热阻分析及综合性能评价。结果表明:管内传热系数及压降均随着质量流量的增加而增加,管径对传热系数影响较大,1#传热系数约为2#的1.1~1.3倍,不同质量流量下温度对传热系数及压降的影响比重不同;随着质量流量的增加,管外水侧热阻占总热阻的比例逐渐增大,管内制冷剂侧热阻占总阻值的比例逐渐减小;两根单管单位压降传热系数均随质量流量的增加而减小,在不同质量流量下饱和温度对参数的影响比重不同。  相似文献   

14.
A review of works devoted to the study of heat transfer in condensation of moving vapor in cocurrent flow of vapor and film is presented. Generalization of a wide range of experimental data obtained by different authors showed that in wave regimes of film flow conditions take place under which an increase in vapor velocity does not lead to enhancement of heat transfer, as compared to heat transfer in condensation of motionless vapor. In turbulent film flow, an intense entrainment of the film from the crests of waves into the vapor core begins when W > Wecr, thus leading to considerable enhancement of heat transfer.  相似文献   

15.
水平管内流动冷凝流型图研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
水平管内流动冷凝的两相流型对其传热与流动的研究十分重要,流型图则是流型辨别及其转换判断的重要工具。本文总结了目前水平管内流动冷凝流型图及其转换标准的研究进展,列举了七种针对流动冷凝提出的流型图:Breber et al.(1980),Tandon et al.(1982),Cavallini et al.(2002,2006),El Hajal et al.(2003),Kim et al.(2012)和Nema et al.(2014),根据现有的研究,发现目前的两相流型图大多针对绝热条件及流动沸腾所提出,其应用于流动冷凝中存在一定的偏差,而流动冷凝两相流型图目前研究还较少。另外,现有的流型图大多针对常规管道和基于常温常压工质所提出,其应用于微管道和低温或高压等工质存在一定的困难,且其研究还未能与传热及压降模型的研究实现较好的联系。  相似文献   

16.
本文在35、40和45℃三种冷凝温度下,对R134a在微肋管内的冷凝换热进行了实验研究。选用质量流量、冷凝温度、微肋管结构参数为变量,以总传热系数、水侧传热系数、制冷剂侧表面传热系数及压降为评价指标。结果表明:总传热系数、制冷剂侧表面传热系数、压降均随着质量流量的增加、冷凝温度的降低和管径的减小而增大,而水侧传热系数随质量流量的增加而稍有降低,冷凝温度对其值影响并不大。热阻分析时发现:随着质量流量的增加,水侧热阻占总热阻比值逐渐增加,而制冷剂侧热阻所占比值逐渐减小,但制冷剂侧热阻总小于水侧热阻;对换热器进行综合性能进行评价时,以表面传热系数与压降的比值(单位压降表面传热系数)为指标,发现该比值均随质量流量的增加呈先减小后增大的趋势,并随着冷凝温度的降低、管径的减小而增大。  相似文献   

17.
R134a在水平强化管外凝结换热的实验研究   总被引:2,自引:0,他引:2  
对氟利昂R134a在水平单管外的凝结换热性能进行了试验研究,试验管为光管和三根强化管,采用热阻分离法得到蒸气侧凝结换热系数。试验结果表明:光管管外Nusselt理论值与实验数据偏差小于10%。强化管No.1-3的传热性能均好于光管,当Re=40000时,No.1-4管的总传热系数分别为:5295,5818,5904,1502W/m2.K。在相同热流密度条件下,No.1-3管的管外换热系数分别是光管的7.0-8.8倍,9.0-10.8倍,9.9-12.0倍。管外强化后,管内外的换热系数已比较接近。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号