首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Scales and efficiency of using geothermal resources in Krasnodar krai for producing thermal energy are analyzed. Results from optimization of the technological circuit and designing of a geothermal system for supplying heat to the Rozovyi settlement in Krasnodar krai are presented.  相似文献   

2.
Summarized data on the number and types of solar collectors and solar plants in use in various countries of the world, as well as on the market development dynamics and specific thermal capacity of operating solar plants per 1000 people, are given. State demand stimulation activities for solar plants are presented for some countries. It is noted that the modern trend in the improvement of solar collectors is the price reduction for materials with the substitution of copper for aluminum in the absorber manufacturing and the reduction of the energy-output ratio using soldering, crimping, and adhesive joints instead of welding. The minimal cost of the generated heat energy is provided by centralized solar heat supply systems. The values of the area of solar plants in Russia (2017), their structure, the features of solar collectors, including Russian-made, are presented. It is indicated that constructions of solar collectors with the optimal cost-effectiveness ratio are in demand on the Russian market. The information on the state of development and use of solar heat plants in Russia is summarized. The main design decisions and operating features of large solar plants in Narimanov, Astrakhan oblast (4400 m2), and in Ust-Labinsk, Krasnodar krai (600 m2), have been considered. It is established that the prospects of the Russian market are determined by the solar radiation in regions as well as the costs of solar collectors and replaceable conventional energy carriers. With allowance for the existing trends and peculiarities of regional development, the prospective Russian solar power market is estimated at 1400000–1500000 m2 (1100–1200 MW).  相似文献   

3.
Results obtained from the first stage of retrofitting and preliminary tests of the geothermal heat supply system for the Rozovyi settlement in the Krasnodar krai are presented.  相似文献   

4.
This article discusses materials and results of the World Geothermal Congress that was held in Melbourne (Australia) from April 19 to April 25, 2015. Information on the extent and technological features of utilization of geothermal resources for heat supply and power production, as well as in other economic areas, is given. A stable growth in the capacity and number of geothermal power systems that is determined by ecological cleanliness, economic efficiency, and the highest (among renewable energy sources) indicators of installed capacity utilization is shown. It was noted that combined schemes of geothermal power plants (GPPs), such as turbine units of different type (binary units, units with one or two separation pressures, etc.), have become more frequently used to increase the efficiency of utilization of geothermal heat carrier. Actual data determining room heating systems with the total worldwide capacity of nearly 50000 MW thermal (MWt) as the most currently significant segment of consumption of geothermal waters are given. In addition, geothermal resources are also utilized in soil pumps, balneological and sports basins, greenhouse complexes, and other manufactures. It was noted that geological studies were carried out in more than 40 countries, with the development of methods of simulation of tanks for the existing and new geothermal fields. Trends of development and the role of geothermal power engineering in the energy supply of many countries are shown. It was shown that prospects for the development of geothermal power generation are significantly associated with utilization of low-temperature geothermal sources in binary power generating units, as well as with the increase in installed capacity of operating geothermal power plants (GPPs) without drilling additional wells, i.e., by using waste geothermal heat carrier in binary-cycle or combined-cycle power plants. The article provides data on a pilot binary power unit at Pauzhetka GPP and on a promising Russian geothermal project to increase the installed capacity of Mutnovsk GPP (whose current capacity is 50.0 (2 × 25.0) MW of electric power) by 25% by constructing a combined binary-cycle power generating unit on the basis of waste separate utilization.  相似文献   

5.
In the second part of the review of modern geothermal power plant technologies and equipment, a role, a usage scale, and features of application of binary cycle plants in the geothermal economy are considered. Data on the use of low-boiling fluids, their impact on thermal parameters and performance of geothermal binary power units are presented. A retrospective of the use of various low-boiling fluids in industrial binary power units in the world since 1965 is shown. It is noted that the current generating capacity of binary power units running on hydrocarbons is equal to approximately 82.7% of the total installed capacity of all the binary power units in the world. At the same time over the past 5 years, the total installed capacity of geothermal binary power units in 25 countries increased by more than 50%, reaching nearly 1800 MW (hereinafter electric power is indicated), by 2015. A vast majority of the existing binary power plants recovers heat of geothermal fluid in the range of 100–200°C. Binary cycle power plants have an average unit capacity of 6.3 MW, 30.4 MW at single-flash power plants, 37.4 MW at double-flash plants, and 45.4 MW at power plants working on superheated steam. The largest binary cycle geothermal power plants (GeoPP) with an installed capacity of over 60 MW are in operation in the United States and the Philippines. In most cases, binary plants are involved in the production process together with a steam cycle. Requirements to the fluid ensuring safety, reliability, and efficiency of binary power plants using heat of geothermal fluid are determined, and differences and features of their technological processes are shown. Application of binary cycle plants in the technological process of combined GeoPPs makes it possible to recover geothermal fluid more efficiently. Features and advantages of binary cycle plants using multiple fluids, including a Kalina Cycle, are analyzed. Technical characteristics of binary cycle plants produced by various manufacturers are considered, and data on the Russian pilot binary geothermal power unit in the Pauzhetskaya GeoPP is provided. Expediency of the use of binary cycle plants for autonomous power supply and energy extension of existing GeoPPs without drilling extra wells and in flowsheets of newly designed combined GeoPPs are noted.  相似文献   

6.
The market of electric energy in the Krasnodar krai and the specific features of electric power supply in the Eisk region are analyzed. The basic aspects of designing wind power plants are considered. The main technical, economic, and environmental indicators of the wind power plants being designed are presented.  相似文献   

7.
Huang Xiang 《电气》2006,17(4):26-30
Since reforming and opening to the outside world, the power construction in China has been expanding by leaps and bounds. As of the end of 2005, the nationwide generation installed capacity made a breakthrough of 500 GW, of which thermal power units represented three-fourths. Relevant predictions indicate that the installed capacity will reach 680-730 GW in 2010 and it will exceed 1000 GW in 2020 as expected.The present situation of service power rate of thermal power units and how to make it approach and come up to world level are questions to be discussed in this paper.  相似文献   

8.
The present state of geothermal power engineering in Russia and prospects for its development are considered. An assessment is given of the projects of constructing a pilot binary geothermal power plant in Kamchatka, developing geothermal heat supply systems in the town of Vilyuchinsk and settlement of Rozovyi, and increasing the installed capacity of the Mutnovsk geothermal power station, which are the top-priority projects implemented by OAO RusGidro with scientific and technical support from ZAO GEOINKOM and ZAO Geoterm-EM.  相似文献   

9.
潘华  姚正  林顺富  方静  颜静汝  高旭 《现代电力》2022,39(2):169-181
为解决电–热综合能源系统(integrated energy system,IES)中热电供需矛盾导致的弃风及环境污染问题,提出了含光热电站及热泵的IES低碳调度优化模型。首先,在能源侧利用热泵的供热灵活性,打破热电联产(combined heat and power, CHP)机组“以热定电”的运行限制;考虑光热电站与CHP机组联合运行,进一步提升CHP机组运行的灵活性。其次,对IES中各设备容量进行优化配置,针对风电、光伏及光热出力的不确定性,采用信息间隙决策理论进行处理,提出风险规避鲁棒模型。最后,通过9节点测试系统验证所提模型的有效性,并划分不同场景验证光热电站及热泵对IES的优化效用。  相似文献   

10.
光伏小镇能源系统是以光伏为主体,结合其它本地能源的综合能源系统。为充分利用太阳能和地热能,本文提出一种考虑源荷不确定性的两阶段鲁棒优化方法,引入不确定性调节参数以避免为保证供电可靠性而牺牲经济效益。建立以系统综合成本最小为目标的max-min-max两阶段鲁棒优化配置模型,对光伏小镇的光伏、热电联产机组、地源热泵、储能进行优化配置。光伏和负荷的不确定性采用不依赖于概率分布的盒式不确定集描述,以上下边界区间表示光伏和负荷的波动范围,形成鲁棒约束,通过列和约束生成算法和强对偶转换降低求解的复杂度。以我国北方某光伏小镇为研究案例,通过改变不确定性调节参数,能有效控制配置方案的保守性,在保证供电可靠性降低负荷缺电率的同时,降低了配置成本,弃光率也得到改善,方案具有很强的适用性。  相似文献   

11.
The article substantiates the possibility of efficiently harnessing the geothermal resources available in the North Caucasian region through constructing binary geothermal power plants (GeoTPPs) using idle petroleum and gas wells. The power capacities of GeoTPPs are evaluated, and the basic characteristics of these power plants in case of constructing them in the promising areas are determined. The overall useful GeoTPP capacity equal to approximately 330 MW can be obtained from using the entire fleet of idle wells available in these areas. Diagrams confirming the possibility of reaching the optimal flowrate of geothermal heat carrier circulating in the geothermal circulation system loop are presented. This flowrate corresponds to a binary GeoTPP’s maximal useful power output. The article shows, taking the Ternair geothermal field as an example, that it is inefficient to use medium-enthalpy thermal waters for generating energy at a binary GeoTPP involving reinjection of a spent heat carrier. It is shown that good prospects can be expected from applying a hybrid geothermal and combined-cycle technology, by means of which it is possible to use lowenthalpy (80–100°С) thermal waters for generating electricity in a highly efficient manner. In accordance with such technology, geothermal heat is used in the binary GeoTPP cycle for heating low-boiling working fluid to its evaporation temperature. The working fluid is evaporated and superheated by using the heat of exhaust gases from a gas turbine power unit. Owing to combined use of the thermal water heat potential and the heat of exhaust gases from a gas turbine power plant in a hybrid process system, it becomes possible to obtain high power performance indicators of hybrid geothermal and combined-cycle power plants. This conclusion is confirmed by the results from numerical evaluations carried out as applied to the Ternair geothermal field. With the fully harnessed resource potential of the Ternair field, the total capacity of hybrid geothermal and combined-cycle power plants may reach 60 MW, a level that would make it possible to relieve a significant part of energy, environmental, economic, and social problems faced by the city of Makhachkala.  相似文献   

12.
We describe the regional program for retrofitting municipal boiler houses in Krasnodar krai by furnishing them with equipment for combined generation of heat and electricity with a total electrical capacity of 270 MW.  相似文献   

13.
确保国内生产总值翻两番的2001~2020年电力工业发展研究   总被引:10,自引:8,他引:10  
在分析研究我国1981—2000年电力弹性系数及参考国外电力工业发展情况基础上,提出了2001—2020年发电量和发电装机容量预测。2020年约需发电装机960GW,发电量4250TWh。根据我国能源资源特点,对2001—2020年发电装机容量、发电量、发电能源消费构成作了分析预测,并分析研究了各大电网发展和全国联网及新电压等级问题。  相似文献   

14.
A layout of a cogeneration plant for centralized supply of the users with electricity and cold (ECCG plant) is presented. The basic components of the plant are an expander-generator unit (EGU) and a vapor-compression thermotransformer (VCTT). At the natural-gas-pressure-reducing stations, viz., gas-distribution stations and gas-control units, the plant is connected in parallel to a throttler and replaces the latter completely or partially. The plant operates using only the energy of the natural gas flow without burning the gas; therefore, it can be classified as a fuelless installation. The authors compare the thermodynamic efficiencies of a centralized cold supply system based on the proposed plant integrated into the thermal power station scheme and a decentralized cold supply system in which the cold is generated by electrically driven vapor-compression thermotransformers installed on the user’s premises. To perform comparative analysis, the exergy efficiency was taken as the criterion since in one of the systems under investigation the electricity and the cold are generated, which are energies of different kinds. It is shown that the thermodynamic efficiency of the power supply using the proposed plant proves to be higher within the entire range of the parameters under consideration. The article presents the results of investigating the impact of the gas heating temperature upstream from the expander on the electric power of the plant, its total cooling capacity, and the cooling capacities of the heat exchangers installed downstream from the EGU and the evaporator of the VCTT. The results of calculations are discussed that show that the cold generated at the gas-control unit of a powerful thermal power station can be used for the centralized supply of the cold to the ventilation and conditioning systems of both the buildings of the power station and the neighboring dwelling houses, schools, and public facilities during the summer season.  相似文献   

15.
Resorting to renewable energy sources (RESs) as one of the bases of the promising world energy industry has become a logical result of the historical development and the recognition that is necessary to diversify primary energy sources being used, with the aim of enhancing both energy and ecological security of countries, regions, and concrete energy consumers. The review of the development of new technologies used for conversion of RESs, the progress of which can be characterized by the fact that by the year 2013 the total generating capacity of RES-based power plants now in operation has amounted to 500 GW—by a factor of 1.5 more than the total generating capacity of all nuclear power stations in the world. The paper presents an analysis of the current status of RESs and problems that restrain their development in Russia. It is noted that the peculiarities of the energy situation in Russia impose the specific requirements upon drawing up the programs of the development of RESs. Along with the use of RESs as part of systems of centralized energy supply, which is a priority for most industrially developed countries and promises the most large-scale introduction of RESs in Russia, it is necessary, first of all, to give attention to the development and creation of systems for independent supply of consumers with power and heat and the development of distributed powergenerating systems using RESs.  相似文献   

16.
If the economic activity in the commercial and residential sector continues to grow, improvements in energy conversion efficiencies of energy supply systems is necessary for CO2 mitigation. In recent years, the electricity driven hot water heat pump (EDHP) and the solar photovoltaic (PV) have been commercialized. The fuel cell (FC) of co‐generation system (CGS) for the commercial and residential sector will be commercialized in the future. Copyright © 2004 Wiley Periodicals, Inc. The aim is to indicate the ideal energy supply system of the users sector, which manages both the economical cost and CO2 mitigation, considering the grid power system. In this paper, cooperative Japanese energy supply systems are modeled by linear programming. It includes the grid power system and energy system of five commercial sectors and a residential sector. The demands of sectors are given by the objective term for 2005 to 2025. Twenty‐four‐hour load for each three annual seasons are considered. The energy systems are simulated to minimize the total cost of energy supply, and to mitigate the CO2 discharge. As a result, the ideal energy system at 2025 is shown. The CGS capacity grows to 30% (62 GW) of the total power system, and the EDHP capacity is 26 GW, in commercial and residential sectors. © 2007 Wiley Periodicals, Inc. Electr Eng Jpn, 160(2): 9–19, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/ eej.20361  相似文献   

17.
Abstract—A substantial growth of the installed photovoltaic systems capacity has occurred around the world during the last decade, thus enhancing the availability of electric energy in an environmentally friendly way. The maximum power point tracking technique enables maximization of the energy production of photovoltaic sources during stochastically varying solar irradiation and ambient temperature conditions. Thus, the overall efficiency of the photovoltaic energy production system is increased. Numerous techniques have been presented during the last decade for implementing the maximum power point tracking process in a photovoltaic system. This article provides an overview of the operating principles of these techniques, which are suited for either uniform or non-uniform solar irradiation conditions. The operational characteristics and implementation requirements of these maximum power point tracking methods are also analyzed to demonstrate their performance features.  相似文献   

18.
Technology for the integrated development of low-temperature geothermal resources using the thermal and water potentials for various purposes is proposed. The heat of the thermal waters is utilized in a low-temperature district heating system and for heating the water in a hot water supply system. The water cooled in heat exchangers enters a chemical treatment system where it is conditioned into potable water quality and then forwarded to the household and potable water supply system. Efficient technologies for removal of arsenic and organic contaminants from the water have been developed. For the uninterrupted supply of the consumers with power, the technologies that use two and more types of renewable energy sources (RESs) have the best prospects. Technology for processing organic waste using the geothermal energy has been proposed. According to this technology, the geothermal water is divided into two flows, one of which is delivered to a biomass conversion system and the other is directed to a geothermal steam-gas power plant (GSGP). The wastewater arrives at the pump station from which it is pumped back into the bed. Upon drying, the biogas from the conversion system is delivered into the combustion chamber of a gas-turbine plant (GTP). The heat of the turbine exhaust gases is used in the GSGP to evaporate and reheat the low-boiling working medium. The working medium is heated in the GSGP to the evaporation temperature using the heat of the thermal water. High-temperature geothermal brines are the most promising for the comprehensive processing. According to the proposed technology, the heat energy of the brines is utilized to generate the electric power at a binary geothermal power station; the electric power is then used to extract the dissolved chemical components from the rest of the brine. The comprehensive utilization of high-temperature brines of the East-Precaucasian Artesian Basin will allow to completely satisfy the demand of Russia for lithium carbonate and sodium chloride.  相似文献   

19.
黄少鹗 《广东电力》2003,16(6):15-17,21
俄罗斯穆特诺夫斯克地热电站总装机容量50MW,是一座在电力和热能生产上有重大突破的新型样板地热电站。为此,介绍了穆特诺夫斯克现代地热电站现状,对地热电站设备、汽轮发电机组、热力系统结构与特点作了阐述。地热发电与传统燃煤、燃油、燃气电厂相比,具有生态洁净、节约燃料运输贮存和管理费用、建设周期较短等优势。鉴于目前我国地热发电正处于起步阶段,地热发电装机容量只占世界上地热电站的装机总容量很少份额,因而可加快我国地热资源的开发应用,促进我国地热电站的发展。  相似文献   

20.
<正>Market construction Overview In 2009, the electric power market expanded continuously. New installed capacity put into production within the coverage of the State Grid Corporation of  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号