首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
Let S be a set ofn points in the plane. For an arbitrary positive rationalr, we construct a planar straight-line graph onS that approximates the complete Euclidean graph onS within the factor (1 + 1/r)[2/3 cos(/6)], and it has length bounded by 2r + 1 times the length of a minimum Euclidean spanning tree onS. Given the Deiaunay triangulation ofS, the graph can be constructed in linear time.  相似文献   

2.
3.
New results for the minimum weight triangulation problem   总被引:1,自引:0,他引:1  
Given a finite set of points in a plane, a triangulation is a maximal set of nonintersecting line segments connecting the points. The weight of a triangulation is the sum of the Euclidean lengths of its line segments. No polynomial-time algorithm is known to find a triangulation of minimum weight, nor is the minimum weight triangulation problem known to be NP-hard. This paper proposes a new heuristic algorithm that triangulates a set ofn points inO(n 3) time and that never produces a triangulation whose weight is greater than that of a greedy triangulation. The algorithm produces an optimal triangulation if the points are the vertices of a convex polygon. Experimental results indicate that this algorithm rarely produces a nonoptimal triangulation and performs much better than a seemingly similar heuristic of Lingas. In the direction of showing the minimum weight triangulation problem is NP-hard, two generalizations that are quite close to the minimum weight triangulation problem are shown to be NP-hard.This research was done while the second author was with the Department of Computer Science, Virginia Polytechnic Institute and State University.  相似文献   

4.
The Relative Neighborhood Graph (RNG) of a set of nk-dimensional points connects “relatively close” neighbors: two points are connected by an edge if they are at least as close to each other as to any other point. Toussaint recently investigated the properties of the RNG in the Euclidean metric and proposed algorithms for its computation. This note examines one of the open problems listed by Toussaint: the extension of the analysis to non-Euclidean metrics. It is shown that Bentley's range query data structures may be used to improve the speed of the best known RNG algorithm in the L (for k ? 2) and L1 (for k = 2) metrics.  相似文献   

5.
We give a linear time and space algorithm for analyzing trees in planar graphs. The algorithm can be used to analyze the sensitivity of a minimum spanning tree to changes in edge costs, to find its replacement edges, and to verify its minimality. It can also be used to analyze the sensitivity of a single-source shortest-path tree to changes in edge costs, and to analyze the sensitivity of a minimum-cost network flow. The algorithm is simple and practical. It uses the properties of a planar embedding, combined with a heap-ordered queue data structure.This research was partially supported by Office of Naval Research Grant N00014-87-K-0467 and National Science Foundation Grant CCR-8610181.This research was done while the author was at the Department of Computer Science, Princeton University, Princeton, NJ 08544, USA.This research was done while the author was at the Department of Computer Science, Stanford University, Stanford, CA 94305, USA.  相似文献   

6.
Matching two-dimensional electrophoresis (2-DE) gel images typically generates a bottleneck in the automated protein analysis, and image distortion and experimental variation, which reduce the matching accuracy. However, conventional matching schemes only compare two complete images, and landmark selection and registration procedures are rather time-consuming. This work presents a novel and robust Maximum Relation Spanning Tree (MaxRST) algorithm, in which an autonomous sub-image matching method does not require registering or manual selection of landmarks. The 2D gel images are represented graphically. Image features are then quantitatively extracted regardless of image size. Similarity between a sub-image and large image is then determined based on Gaussian similarity measurement inspired by fuzzy method, thereby increasing the accuracy of fractional matching. The proposed autonomous matching algorithm achieves an accuracy of up to 97.29% when matching 627 2-DE gel test images. In addition to accommodating image rotation, reversals, shape deformation and intensity changes, the proposed algorithm effectively addresses the sub-image mapping problem and was analyzed thoroughly using a large dataset containing 4629 images. The contributions of this work are twofold. First, this work presents a novel MaxRST strategy and autonomous matching method that does not require manual landmark selection. Second, the proposed method, which extends 2-DE gel matching to query sub-image and a database containing large sets of images, can be adopted for mapping and locating, and to compare small gel images with large gel images with robustness and efficiency.  相似文献   

7.
The relative neighborhood graph of a set of n points in the plane under the L1-metric is considered. An algorithm that runs in O(nlog n) time for constructing the relative neighborhood graph based on the Delaunay triangulation is presented, improving a previously known algorithm that runs in O(n2log n) time.  相似文献   

8.
Given an edge-capacitated undirected graph G=(V,E,C) with edge capacity , n=|V|, an st edge cut C of G is a minimal subset of edges whose removal from G will separate s from t in the resulting graph, and the capacity sum of the edges in C is the cut value of C. A minimum st edge cut is an st edge cut with the minimum cut value among all st edge cuts. A theorem given by Gomory and Hu states that there are only n−1 distinct values among the n(n−1)/2 minimum edge cuts in an edge-capacitated undirected graph G, and these distinct cuts can be compactly represented by a tree with the same node set as G, which is referred to the flow equivalent tree. In this paper we generalize their result to the node-edge cuts in a node-edge-capacitated undirected planar graph. We show that there is a flow equivalent tree for node-edge-capacitated undirected planar graphs, which represents the minimum node-edge cut for any pair of nodes in the graph through a novel transformation.  相似文献   

9.
The problem of verifying a Minimum Spanning Tree (MST) was introduced by Tarjan in a sequential setting. Given a graph and a tree that spans it, the algorithm is required to check whether this tree is an MST. This paper investigates the problem in the distributed setting, where the input is given in a distributed manner, i.e., every node “knows” which of its own emanating edges belong to the tree. Informally, the distributed MST verification problem is the following. Label the vertices of the graph in such a way that for every node, given (its own state and label and) the labels of its neighbors only, the node can detect whether these edges are indeed its MST edges. In this paper, we present such a verification scheme with a maximum label size of O(log n log W), where n is the number of nodes and W is the largest weight of an edge. We also give a matching lower bound of Ω(log n log W) (as long as W > (log n)1+ε for some fixed ε > 0). Both our bounds improve previously known bounds for the problem. For the related problem of tree sensitivity also presented by Tarjan, our method yields rather efficient schemes for both the distributed and the sequential settings. A preliminary version of this work was presented in ACM PODC 2006. A. Korman was supported in part at the Technion by an Aly Kaufman fellowship. S. Kutten was supported in part by a grant from the Israeli Ministry for Science and Technology.  相似文献   

10.
The relative neighbourhood graph (RNG) of a set of n points on the plane is defined. The ability of the RNG to extract a perceptually meaningful structure from the set of points is briefly discussed and compared to that of two other graph structures: the minimal spanning tree (MST) and the Delaunay (Voronoi) triangulation (DT). It is shown that the RNG is a superset of the MST and a subset of the DT. Two algorithms for obtaining the RNG of n points on the plane are presented. One algorithm runs in 0(n2) time and the other runs in 0(n3) time but works also for the d-dimensional case. Finally, several open problems concerning the RNG in several areas such as geometric complexity, computational perception, and geometric probability, are outlined.  相似文献   

11.
A method for clustering data according to a visual model of clusters is proposed. The method uses either of two graphs which are defined according to relative distance and based on the Gabriel graph and the relative neighbourhood graph respectively. The method is locally sensitive, hierarchic and based on the concept of limited neighbourhood sets. Clusters that are either disjoint or homogeneous and separable by sharp changes in point density may be detected.  相似文献   

12.
C. C. McGeoch 《Algorithmica》1995,13(5):426-441
The essential subgraph H of a weighted graph or digraphG contains an edge (v, w) if that edge is uniquely the least-cost path between its vertices. Let s denote the number of edges ofH. This paper presents an algorithm for solving all-pairs shortest paths onG that requires O(ns+n2 logn) worst-case running time. In general the time is equivalent to that of solvingn single-source problems using only edges inH. For general models of random graphs and digraphsG, s=0(n logn) almost surely. The subgraphH is optimal in the sense that it is the smallest subgraph sufficient for solving shortest-path problems inG. Lower bounds on the largest-cost edge ofH and on the diameter ofH andG are obtained for general randomly weighted graphs. Experimental results produce some new conjectures about essential subgraphs and distances in graphs with uniform edge costs.Much of this research was carried out while the author was a Visiting Fellow at the Center for Discrete Mathematics and Theoretical Computer Science (DIMACS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号