首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This work presents a scanning laser-based thermal diffusivity measurement technique for thin films as well as for bulk materials. In this technique, a modulated laser beam is focused through a transparent substrate onto the film–substrate interface. The generated thermal wave is detected using a fast-responding thermocouple formed between the sample surface and the tip of a sharp probe. By scanning the laser beam around the thermocouple, the amplitude and phase distributions of the thermal wave are obtained with micrometer resolution. The thermal diffusivity of the film is determined by fitting the obtained phase signal with a three-dimensional heat conduction model. Experimental results are presented for a 150-nm gold film evaporated on a glass substrate.  相似文献   

2.
Polycrystalline CdS thin films of different thickness heavily doped with indium were deposited onto glass substrates by vacuum evaporation of CdS and indium. The films were characterized by Hall measurements and scanning electron microscopy observations. The variations in conductivity, carrier concentration and mobility with the film thickness are similar to the dependence of the grain size on the thickness. The deduced dependences of the electrical parameters on the grain size show the trends characteristic of polycrystalline semiconductor which are explained by the boundary carrier trapping theory. Thus, the polycrystalline origin of the thickness dependence of the electrical parameters in heavily doped CdS films is concluded.  相似文献   

3.
Laser infrared photothermal radiometry (PTR) was used to measure the thermophysical properties (thermal diffusivity and conductivity) of various thermal sprayed coatings on carbon steel. A one-dimensional photothermal model of a three-layered system in the backscattered mode was introduced and compared with experimental measurements. The uppermost layer was used to represent a roughness-equivalent layer, a second layer represented the thermal sprayed coating, and the third layer represented the substrate. The thermophysical parameters of thermal sprayed coatings examined in this work were obtained when a multiparameter-fit optimization algorithm was used with the backscattered PTR experimental results. The results also suggested a good method to determine the thickness of tungsten carbide and stainless-steel thermal spray coatings once the thermophysical properties are known. The ability of PTR to measure the thermophysical properties and the coating thickness has a strong potential as a method for in situ characterization of thermal spray coatings.  相似文献   

4.
Cadmium sulfide (CdS) thin films were deposited on glass substrate at room temperature by successive ionic layer adsorption and reaction method (SILAR). The deposition parameters such as rinsing time, rinsing cycle and concentration of precursor solution were varied during the preparation of the samples. The structural characterization and optical characterization were carried out. The deposited films by lower growth rate and lower precursor concentration solutions were having mixed hexagonal and cubic phases. Thickness dependence of the optical band gap energy was evaluated and it varies from 2.46 to 2.32 eV in the thickness range 38–330 nm.  相似文献   

5.
Dong Jun Lee 《Thin solid films》2010,518(22):6352-7100
This paper aims to investigate the effects of the substrate, the printed line thickness and the sintering temperature on the electrical resistivity, Young's modulus and hardness of inkjet-printed Ag thin films. Electrical resistivity was determined from the four-point method and Young's modulus and hardness were evaluated from nanoindentation test. Several models for evaluating Young's modulus and hardness were used and compared to account for the influence of substrates. It is noted that Ag lines on glass have higher resistance and resistivity than those on polyimide (PI) since Ag lines on glass and PI have tensile and compressive residual thermal stresses, respectively, due to the difference of coefficient of thermal expansion between Ag lines and substrates. Young's modulus of Ag films on glass can be predicted by the modified King and Bec models considering the substrate effect, but these models offer unstable results for Ag films on PI. Young's modulus and hardness of Ag films increase with the sintering temperature, and they are little affected by the film thickness when fully sintered.  相似文献   

6.
Cadmium sulfide (CdS) thin films have been deposited onto glass and polyethylene terephthalate (PET) substrates at room temperature with thermal evaporation in a vacuum of about 3 × 10−5 Torr for use as window materials for solar cells. Effects of substrate types on the structural and optical characteristics of the films were studied. Sets of experiments were conducted to optimize the deposition of CdS films with appropriate deposition parameters. The deposited films were analyzed with atomic force microscopy, energy dispersive X-ray, X-ray diffraction and optical transmittance measurements to determine their structural and optical characteristics. X-ray diffraction patterns confirm the proper phase formation of the CdS. PET substrate exhibited the larger roughness than that for the glass because of large particles adsorbed on the PET substrate. The average transmittance of the films PET is about 71% and increases up to 81% for glass substrate.  相似文献   

7.
The technology of production and some of the properties of isotropic magnetic Ni 80%-Fe 20% films are described. These films were obtained by permalloy electrodeposition onto glass substrates previously coated with vacuum-deposited thin films of Ni-Fe alloy. The change in the magnetoresistance of the films as a function of thickness has been investigated and is discussed, taking into account the influence of the film composition. The results are compared with those previously reported for evaporated films. The dependence of coercive force on film thickness is given. An increase in the crystallite size of the electro-deposited films with respect to the vacuum-deposited substrate has been found.  相似文献   

8.
The thermal effusivity of gold, aluminum, and copper thin films of nanometric thickness (20 nm to 200 nm) was investigated in terms of the films’ thickness. The metallic thin films were deposited onto glass substrates by thermal evaporation, and the thermal effusivity was estimated by using experimental parameters such as the specific heat, thermal conductivity, and thermal diffusivity values obtained at room conditions. The specific heat, thermal conductivity, and thermal diffusivity values of the metallic thin films are determined with a methodology based on the behavior of the thermal profiles of the films when electrical pulses of few microseconds are applied at room conditions. For all the investigated materials, the thermal effusivity decreases with decreased thickness. The thermal effusivity values estimated by the presented methodology are consistent with other reported values obtained under vacuum conditions and more elaborated methodologies.  相似文献   

9.
Technological development, especially in microelectronics, necessitates the development of new and improved methods for measuring the thermal properties of materials, especially in the form of ultrathin films. Previously, modified ac calorimetry (laser-heating Ångstrom method) using a scanning laser as the energy source was developed and shown to provide accurate values of thermal diffusivity and derived thermal conductivity for a broad range of materials in the form of free-standing thin sheets or films, wires including fiber bundles, and some films on substrates. This paper describes further applications of the modified ac-calorimetry technique for measurements of the thermal conductivity of thin films deposited on substrates. It was used to measure successfully the thermal conductivities of 1000- to 3000-Å-thick aluminum nitride films, aluminum oxide films, etc., which were deposited on a glass substrate. It was also shown to be suitable for developmental measurements on submicron-thick chromatic films deposited on a PET substrate, which are photothermal recording layers, used in the media of CD-R drives of computer systems.  相似文献   

10.
R. Hill  I.A.S. Edwards 《Vacuum》1977,27(4):277-280
The sulphur to cadmium ratio in cadmium sulphide thin films has been compared to that of a clean single crystal using Auger spectroscopy. Thermally evaporated CdS films were found to be deficient in sulphur in their outer layers, but were stoichiometric after etching. Electron beam evaporated CdS films were found to be stoichiometric.It was found that baking these films at 190°C in argon or nitrogen at atmospheric pressure increased the sulphur to cadmium ratio, probably due to sulphur diffusing to the surface and being physisorbed there.From measurements of the temperature dependence of the copper sulphide layer in CdSCu2S cells it was found that chalcocite, djurleite and diginite copper sulphide phases are present even in efficient cells. A model is proposed for the structure of the copper sulphide layer in which the copper deficient phases are the result of excess sulphur on the CdS surfaces and vary in thickness according to the degree of non-stoichiometry of the CdS surfaces.  相似文献   

11.
Determination of the thermophysical properties of thin film materials is important for modeling and optimizing laser microvia drilling of organic substrates in microelectronics applications. Techniques to measure the density, thermal conductivity, thermal diffusivity, thermal decomposition point, and specific ablation heat of thin polymer films are described. An experimental apparatus was set up for laser heating of the sample. To measure the thermal diffusivity, an analytic heat transfer model is developed. One-dimensional heat conduction is assumed due to the small thickness of the film compared to the radius of the laser beam. The value of thermal diffusivity is obtained by fitting the experimental data to the theory. The specific ablation heat is obtained by measuring the mass loss during laser ablation. The experimental apparatus and the property determination methodology can also be applied to thin samples of other materials.  相似文献   

12.
Zn- and Cu-doped CdS thin films were deposited onto glass substrates by the chemical bath technique. ZnCl2 and CuCl2 were incorporated as dopant agents into the conventional CdS chemical bath in order to promote the CdS doping process. The effect of the deposition time and the doping concentration on the physical properties of CdS films were investigated. The morphology, thickness, bandgap energy, crystalline structure and elemental composition of Zn- and Cu-doped CdS films were investigated and compared to the undoped CdS films properties. Both Zn- and Cu-doped CdS films presented a cubic crystalline structure with (1 1 1) as the preferential orientation. Lower values of the bandgap energy were observed for the doped CdS films as compared to those of the undoped CdS films. Zn-doped CdS films presented higher thickness and roughness values than those of Cu-doped CdS films. From the photoluminescence results, it is suggested that the inclusion of Zn and Cu into CdS crystalline structure promotes the formation of acceptor levels above CdS valence band, resulting in lower bandgap energy values for the doped CdS films.  相似文献   

13.
介绍了交流量热法测量薄膜热扩散率的原理和系统组建,用脉宽为纳秒级的超短激光脉冲作为热源,测量了Si衬底上厚度为100nm和500nm的SiO2薄膜水平方向上的热扩散率,实验结果表明该结构的热扩散率比SiO2体材料的要小,并且随着SiO2层厚度的减小,热扩散率也减少。  相似文献   

14.
用直流磁控溅射和热氧化法在玻璃衬底上制备ZnO/In2O3透明导电多层膜,当总厚度一定时,调节溅射沉积的层数与相应各层膜的厚度,研究该多层膜微观结构、光学性能和电学性能的变化.XRD和SEM分析表明:随着溅射沉积层数的增加,In2O3衍射峰的强度不断地减弱,ZnO衍射峰出现了不同的晶面择优取向;多层膜表面的ZnO晶粒粒径变小,光洁度增加.四探针法方块电阻测试表明:低温热氧化时,ZnO/In2O3多层膜的方块电阻随层数的增加而上升;高温氧化时,ZnO/In2O3多层膜的方块电阻随层数的增加而下降.可见光光谱分析表明:随着溅射沉积层数的增加,ZnO/In2O3多薄膜在可见光区的平均透过率增大,透过率的峰值向短波方向偏移.  相似文献   

15.
The transport properties of condensed phase materials are, in principle, dependent on the local structure and composition of the specimen. This is particularly evident near the free surface of a solid alloy specimen where the morphology, composition, and thermal diffusivity exhibit significant depth dependence, as demonstrated in an earlier study of the depth-resolved thermal diffusivity of a galvanized steel specimen. A new non-contact method was used, based on time-resolved, spectroscopic measurement of the total mass removed from the specimen surface representatively in elemental composition by a high-power laser pulse. A new study of a titanium thin film of varying thickness deposited on a copper substrate is presented. The titanium thin film is first fabricated in a vacuum and then immediately analyzed for composition and thermophysical properties in situ, both by the method of representative laser-produced plasmas (LPP). Successive ablation layers of the thin film, as exposed by LPP ablation, have revealed the dependence of the thermophysical properties on film thickness as well as on depth. The existence of a characteristic length over which the substrate influences the dynamics of thermal transport in the titanium thin film has also been observed.  相似文献   

16.
An ac calorimetric method for measuring the thermal diffusivity of thin-film materials has been widely applied. In the application of this method, the systematic errors caused by the heat loss effect, the edge reflection effect, etc., have been analyzed and corresponding correction methods have been developed. But when measuring films with low thermal diffusivity or with thickness comparable to the thermal diffusion length, a two-dimensional effect which will also result in a systematic error of the measurement is present. In this paper, the mechanism of two-dimensional heat conduction within a thin sample which is supplied a periodic heat flux by a chopped light beam is analyzed. A numerical analysis method is developed to study the effect of the two-dimensional heat conduction on the measured thermal diffusivity values. The relations between the measured thermal diffusivity and independent parameters such as frequency, thickness of sample, width of light spot, etc., are demonstrated to indicate the two-dimensional effect. The experimental precondition for minimizing the systematic error caused by the two-dimensional effect is determined. In addition, the analysis method presented in this paper should be useful for more difficult problems such as error estimation of the thermal diffusivity measurement of coatings or composite films.  相似文献   

17.
Size tunable cadmium sulfide (CdS) films deposited by a dip coating technique on silicon (100) and indium tin oxide/glass substrates have been characterized using X-ray diffraction, X-ray reflectivity, transmission electron microscopy, atomic force microscopy and photoluminescence spectroscopy. The structural characterization indicated growth of an oriented phase of cadmium sulfide. Transmission electron microscopy used to calculate the particle size indicated narrow size dispersion. The tendency of nanocrystalline CdS films to form ordered clusters of CdS quantum dots on silicon (100) substrate has been revealed by morphological studies using atomic force microscopy. The photoluminescence emission spectroscopy of the cadmium sulfide films has also been investigated. It is shown that the nanocrystalline CdS exhibit intense photoluminescence as compared to the large grained polycrystalline CdS films. The effect of quantum confinement also manifested as a blue shift of photoluminescence emission. It is shown that the observed photoluminescence behavior of CdS is substantially enhanced when the nanocrystallites are assembled on silicon (100) substrate.  相似文献   

18.
The process of thermal oxidation of ion-plated chromium films having the A15 structure deposited on the glass BK-7 and on quartz glass was investigated in air and in oxygen at 676 K. It has been stated that the optical constants of plated chromium films do not depend on the nature of the substrate; the substrate, however, does influence the rate and character of the process. The oxidation of chromium on quartz substrates proceeds according to the inverse logarithmic rule and on glass according to the parabolic rule. A layer of chromium oxide is always formed on chromium films irrespective of the atmospheric composition (oxygen or air); in air the layer of chromium oxide is thicker than in an atmosphere of pure oxygen. Ellipsometric measurements allow the determination of both the refractive index and the thickness of the chromium oxide formed on chromium films.  相似文献   

19.
CdS多晶薄膜的制备及性质研究   总被引:1,自引:0,他引:1  
分别采用近空间升华法和电子束蒸发法在透明导电玻璃和普通载玻片上制备了硫化镉(CdS)多晶薄膜.对制备样品的表征结果表明:(1)两种方法制备样品都沿(002)晶向择优生长,属于六方相多晶结构,但择优取向度不同;(2)CdS薄膜表面连续而致密,粒径均匀,但两种工艺制备样品的S:Cd原子比有较大差异;(3)CdS薄膜的光能隙在2.39~2.44eV之间,电子束蒸发制备样品光能隙稍小.分析认为,两种方法制备样品的上述差异可能与衬底温度、沉积时间及成膜机制的不同相关.  相似文献   

20.
Measurements have been carried out of the temperature dependence of the fluctuation-induced excess electrical conductivity of thin (thickness much less than the Ginzburg-Landau coherence length) superconducting films of tin below the transition temperature. Two types of specimen were investigated: (a) films deposited on a glass substrate held at 300 K and (b) films deposited on a glass substrate at 300 K and then covered by a protective layer of germanium. Special care was taken to ensure sample homogeneity. Analysis of the results shows that the fluctuation parameter, εc, is not affected by the germanium layer. Its value is, however, much larger than that predicted by the theory of Kajimura, Micoshiba, and Yamaji.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号