首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
根据悬索桥在恒载作用下的力学特点,对悬索桥的主缆线形及无应力索长的计算方法进行了研究.采用悬链线单元建立悬索桥线形和无应力索长的计算公式,结合施工中加劲梁的架设特点,确定了成桥线形分析中的吊索力,还对计算悬索桥主缆线形的非线性方程组采用Newton-Raphson迭代格式求解并编制程序.最后通过算例验证了该方法的计算精度、有效性和稳定性,并将计算结果与其他文献的计算结果进行了分析比较.分析结果表明:该方法具有计算过程简洁和精度高的优点,其精度满足成桥几何线形的初步设计要求,适用于大跨度悬索桥的主缆线形和内力的计算与分析.  相似文献   

2.
大跨度悬索桥主缆线形及内力计算方法研究   总被引:1,自引:0,他引:1  
随着悬索桥跨度的增加,几何非线性的影响愈来愈突出,因此如何在结构分析中合理、精确地考虑其影响,具有重要的理论意义和工程价值。本文具体阐述了大跨度悬索桥线形与内力计算所涉及到的成桥、空缆及加劲梁吊装阶段基本原理,并充分考虑了施工过程中主缆的温度修正,在此解析法的基础上编制了悬索桥主缆计算程序SUSP-CABLE,算例表明本文计算方法的正确性,可供广大技术人员参考。  相似文献   

3.
自锚式悬索桥主缆成桥线形分析   总被引:15,自引:0,他引:15  
基于悬链线解析模型,将加劲梁简化为刚性支承连续梁,根据悬链线索元的节点力与索单元投影的函数关系式,建立了自锚式悬索桥的分析模型.利用几何线形误差影响矩阵调整索端力,给出了求解主缆成桥线形和主缆无应力长度的非线形迭代方法.与有限元分析方法相比,该方法计算过程简单,精度满足成桥几何线形的设计要求,便于工程应用.算例分析表明,该方法计算结果与有限元方法计算结果具有较好的一致性.  相似文献   

4.
针对自锚式悬索桥的主缆线形在施工过程中的变化特性,自编分段悬链线法和抛物线法程序实现了大跨径自锚式悬索桥主缆线形、空缆线形、各节段无应力长度、吊点坐标和索鞍预偏量等几何特征参数的精确计算;结合工程实例,对自编程序与Midas civil软件计算结果进行了比较分析. 结果表明:与有限单元法相比,分段悬链线法计算得到的索鞍预偏量相对误差为11. 3%,抛物线法计算得到的索鞍预偏量相对误差为23%. 在施工中,分段悬链线法和抛物线法计算结果需要反复修正迭代以综合确定主缆线形.  相似文献   

5.
自锚式悬索桥主缆线形计算非线性规划方法   总被引:1,自引:2,他引:1  
基于分段悬链线法,介绍自锚式悬索桥主缆线形计算原理和步骤,考虑弯矩对加劲梁轴向刚度的影响,在迭代计算过程中,提出采用非线性规划方法,并与传统的影响矩阵法进行对比,计算结果表明,两者结果吻合,从而使借助大型通用优化软件对自锚式悬索桥主缆线形进行精确求解成为可能.  相似文献   

6.
基于悬索桥的传力特点,提出主塔纵向受力简化分析模型,对中、边跨主缆的内力及线形进行分析,根据主缆无应力长度相等的原则推导出塔顶位移、塔底弯矩和轴力的计算公式.分别以主跨为1000米的单跨及三跨悬索桥为例,利用简化计算方法对主塔的纵向受力进行了计算,并与有限元计算结果进行对比分析.结果表明,简化公式具有良好的计算精度,且可同时适用于单跨及三跨悬索桥,满足了概念设计的要求.  相似文献   

7.
以悬索桥主缆线形确定的常用精确数值解析算法为研究对象,通过对它们的比较分析和公式推导发现:在主缆理想柔性、忽略泊松比效应的最基本假定下,主缆线形确定的精确数值解析法可归结为主缆自重集度按其有、无应力长度计算作为已知条件的两大类算法;并且证明了在每大类解析算法中的所有方法是完全等价的.研究还表明:第二类解析算法为"全精确解析算法",第一类为"准精确解析算法";在第一类算法中,主缆无应力长度公式的计算值偏小.仅就悬索桥主缆成桥态线形确定而言,主缆线形确定的两大类数值解析算法都具有很高的工程精度,但第二类算法的主缆自重集度的确定更为精确、更接近实际情况,实际计算时应优先使用它.另外,针对两类解析算法涉及到大量的超越方程求解和递推迭代计算的情况,提出了基于MATLAB软件的高精度电算实现方法.最后,给出一个超大跨径悬索桥的中跨主缆线形确定的验证算例.  相似文献   

8.
给出了悬索桥主缆在恒载作用时主缆拉力与引入参数垂跨比k ,全跨恒载总和Pw,弦转角之间的函数关系 ,再进一步给出主缆在恒载、活载共同作用时的跨度极限 ,最后给出小弦转角时主缆的无应力长度表达式。  相似文献   

9.
为研究三塔悬索桥主缆与鞍座的抗滑特性,给出了三塔悬索桥主缆抗滑安全系数的简化计算方法.考虑活载作用下塔、缆变形以及加载跨与非加载跨主缆内力的平衡关系,推导鞍座处主缆抗滑安全系数的解析计算公式;建立有限元模型对公式进行验证;研究垂跨比、塔缆刚度比、恒活载比、跨径等主要设计参数对主缆抗滑安全系数的影响.研究表明:该公式可用于悬索桥初步设计阶段主缆抗滑安全系数的估算,能够为设计参数的合理取值提供理论依据.主缆抗滑安全系数随着塔缆刚度比增大而减小,当塔缆刚度比小于3时,增大塔缆刚度比,主缆抗滑安全系数迅速减小,当塔缆刚度比大于3时,塔缆刚度比对主缆抗滑安全系数影响较小;垂跨比对主缆抗滑安全系数的影响取决于桥塔刚度;主缆抗滑安全系数随着恒活载比值及跨径增大而增大.  相似文献   

10.
分析悬索桥主缆施工过程中测量数据的影响因素及误差来源,介绍测量方法的应对调整方案。 主缆线形基准索股测量无法使用几何水准,采取先进高精度测量全站仪器、只能单向三角测量,一台全 站仪器进行单向三角测量如果出现粗差无法校对,同时测量的基准索股对温度变化、风力的大小、塔位 的偏移等因素十分敏感,因此对测量方案进行调整,选择在无风或风力很小、温度稳定的夜间进行,用两 台高精度的自动跟踪全站仪同步单向三角测量,使得测量任务能在短时间完成,满足悬索桥主缆施工控 制精度要求。  相似文献   

11.
为了充分考虑索鞍对主缆长度的影响,兼顾操作便捷性与计算准确性,提出大跨径悬索桥索鞍处主缆长度解析计算方法. 首先,根据主缆与索鞍的几何关系,推导了索鞍处主缆曲线修正算法;然后,利用牛顿-拉菲森迭代法,对所得二元非线性方程组进行求解;最后,选取常见的主索鞍与散索鞍两组算例,验证该方法的可靠性. 结果表明:相比于传统算法,减少了6个方程与6个初始输入参数,表达形式更加明确;仅需输入两个参数,且对参数初始值设置没有严格要求,均可达到快速收敛的效果,增强了其可操作性;迭代次数减少50%,计算时间不足传统算法的10%,大大提高了计算效率,且计算精度可满足工程要求. 所提出的算法可方便地应用于建设期间主缆曲线长度以及索鞍位置的确定,使大跨径悬索桥的施工控制更为精准,进而确保其成桥状态满足设计要求.  相似文献   

12.
温度对悬索桥索股垂度的影响分析   总被引:2,自引:2,他引:0  
针对悬索桥主缆索股线形对温度变化敏感的特点,研究了主缆索股断面温度变化以及索塔塔身温度变化对索股线形的影响.考虑主缆索股沿跨度为同一温度,并根据无应力索长恒定不变的原理,给出了空缆状态下索股温度变化与垂度关系的迭代方法,以及温度导致的索塔偏位与索股垂度之间的相互影响,及相应的修正方法.比较了迭代修正法和有限元法分别计算得到的不同温差下索股垂度的改变量,两种方法计算结果吻合较好,最大偏差为9 mm,约为3%.分析表明,运用迭代方法修正由于温差引起主缆索股垂度变化量是可行的.  相似文献   

13.
为了提高三塔悬索桥刚性中塔的鞍缆防滑安全度,研究了5个方案即在跨中设置中央扣、改变矢跨比、在塔根和主缆间设置扣索、在塔顶处设置钢结构构件、在索鞍两侧主缆上添加辅助拉索等的有效性。以泰州长江大桥为工程背景,结合有限元数值方法和解析法,证明了中央扣和扣索方案的效果甚微,而其余三个方案则十分有效,并给出相应的设计建议。  相似文献   

14.
目的研究确定自锚式斜拉-悬索协作体系桥成桥状态时构件的空间位置和缆索的成桥索力.方法根据无应力索长和索力的概念推导了无应力索长的索力不变原理,提出了自锚式斜拉-悬索协作体系桥成桥索力的计算方法.结果运用该方法对大连跨海大桥的设计方案进行了计算分析,利用该方法计算得到的成桥状态下斜拉索和吊索的索力均匀,主缆线形平顺.除主塔附近的加劲梁由于索距较大造成弯矩较其他区域偏大外,其他区域弯矩分布均匀合理,加劲梁的最大弯矩为14716kN·m.主塔弯矩较小且塔顶水平变位接近于零.结论计算结果表明利用该方法能够按照要求得到该类桥梁的合理成桥索力,并且通过非线性迭代计算得到的缆索无应力长度可以直接应用于施工阶段分析.  相似文献   

15.
文章基于有限位移弹性理论,采用带动坐标的混合法对杆系结构的有限元平衡方程进行求解。由此建立了一套平面杆系结构的几何非线性有限元分析方法,在此方法的基础上,通过改进索鞍单元模拟施工过程中索鞍的顶推。最后以贵州H大桥为背号,对其恒载状态下的结构内力及变形进行了施工过程的精细计算,计算结果表明:算法正确,精度较高,收敛较快,程序具有较强的实用性。  相似文献   

16.
目的对典型的锚固区局部节段进行分析,以解决自锚式悬索桥主缆锚固区结构复杂,平面杆系程序无法把握锚固区复杂受力状态的问题,为桥梁设计和施工提供参考依据.方法运用MIDAS/FEA建立浑河景观桥锚固区局部有限元模型,分析最不利索力设计值下的局部应力状态及不同荷载下的极限承载力.结果锚固区在主缆索力T=50000kN作用下,产生的最大位移为4.91mm;锚垫板的索孔周围的von Mises应力在110MPa左右.随着荷载的增加,锚固区von Mises应力不断增大.当索力为设计荷载的3.5倍时,锚固区各板件的应力均达到了468MPa以上,位移最大值为24mm.结论主缆锚固区各构件的刚度和强度均满足要求,锚固区的极限承载力为设计荷载的3.5倍,结构的安全系数较高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号