首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
针对现有社交网络影响最大化算法影响范围小和时间复杂度高的问题,提出一种基于独立级联模型的k-核过滤算法。首先,介绍了一种节点影响力排名不依赖于整个网络的现有影响力最大化算法;然后,通过预训练k,找到对现有算法具有最佳优化效果且与选择种子数无关的k值;最后,通过计算图的k-核过滤不属于k-核子图的节点和边,在k-核子图上执行现有影响最大化算法,达到降低计算复杂度的目的。为验证k-核过滤算法对不同算法有不同的优化效果,在不同规模数据集上进行了实验。结果显示,应用k-核过滤算法后:与原PMIA算法相比,影响范围最多扩大13.89%,执行时间最多缩短8.34%;与原核覆盖算法(CCA)相比,影响范围没有太大差异,但执行时间最多缩短28.5%;与OutDegree算法相比,影响范围最多扩大21.81%,执行时间最多缩短26.96%;与Random算法相比,影响范围最多扩大71.99%,执行时间最多缩短24.21%。进一步提出了一种新的影响最大化算法GIMS,它比PMIA和IRIE的影响范围更大,执行时间保持在秒级别,而且GIMS算法的k-核过滤算法与原GIMS算法的影响范围和执行时间差异不大。实验结果表明,k-核过滤算法能够增大现有算法选择种子节点集合的影响范围,并且减少执行时间;GIMS算法具有更好的影响范围效果和执行效率,并且更加鲁棒。  相似文献   

2.
一种新型的社会网络影响最大化算法   总被引:5,自引:0,他引:5  
田家堂  王轶彤  冯小军 《计算机学报》2011,34(10):1956-1965
社会网络中影响最大化问题是对于给定k值,寻找k个具有最大影响范围的节点集.这是一个优化问题并且是NP-完全的.Kemple和Kleinberg提出具有较好影响范围的贪心算法,但其时间复杂度很高,不能适用在大型社会网络中,并且不能保证最好的影响范围.文中利用线性阈值模型的“影响力积累”特性,提出了一个该模型下影响最大化算...  相似文献   

3.
李敏佳  许国艳  朱帅  张网娟 《计算机应用》2018,38(12):3419-3424
在社会网络影响力最大化(IM)算法中,针对目前仅选取局部最优节点造成的影响范围较小的问题,综合考虑核心节点和结构洞节点的传播优势,提出了一种基于结构洞和度折扣的最大化算法(SHDD)。首先,该算法将结构洞思想和中心度思想互相融合应用到影响力最大化问题中,并找出能将结构洞节点和核心节点综合发挥最大传播作用的α因子,使得信息更大范围地扩散从而扩大整个网络的影响范围。其次,为突出两个思想融合的优势,将二度邻居的影响添加到结构洞评价标准中来选取结构洞节点。在不同规模的数据集上实验结果表明,与DegreeDiscount算法相比,SHDD在没有增加过多时间开销的同时扩大了影响范围;与基于结构的贪心(SG)算法相比,在聚类系数较大的网络中SHDD扩大了影响范围并降低了时间开销。SHDD在α因子取0.6时能最大限度地发挥结构洞节点和核心节点融合的作用并且在聚类系数较大的社交网络中能更加稳定地扩大影响范围。  相似文献   

4.
宫秀文  张佩云 《计算机科学》2013,40(Z6):136-140
社交网络中影响最大化问题是指找出最具有影响力的k个节点,使得最终社交网络中被影响的节点最多,信息传播范围最大。针对影响最大化问题,目前已存在一些基本传播模型,但是这些模型没有考虑网络中节点的相关性和重要性,而网络中节点的相关性和重要性是衡量其影响力的一个重要指标,因此,提出了一种基于网页排名算法的信息传播模型(PageRank-based Propagation Model,PRP),然后利用贪心算法来近似求解影响最大化问题。实验结果表明,基于PageRank的传播模型解决影响最大化问题的效果比传统的线性阈值模型、加权级联模型和独立级联模型的效果更好,影响力范围更大。  相似文献   

5.
针对在社交网络中挖掘意见领袖时存在的计算复杂度高的难题,提出了一种基于K核分解的意见领袖识别算法CR.首先,基于K核分解方法获取社交网络中的意见领袖候选集,以缩小识别意见领袖的数据规模;然后,提出包括位置相似性和邻居相似性的用户相似性的概念,利用K核值、入度数、平均K核变化率和用户追随者个数计算用户相似性,并根据用户相...  相似文献   

6.
现有近似求解影响最大化算法的时间复杂度较高,为此,提出一种扩展的线性阈值模型及其概率转移矩阵,给出该模型的传播过程及规则,设计基于概率转移矩阵的影响最大化算法,并利用贪心方法寻找到k个最具影响的节点。该算法通过矩阵乘积的方法得到,时刻节点之间的影响概率,无需在每个时刻计算所有非活跃节点的边际效益,从而在较短时间内提高运行时的效率,使得在规模较大的社会网络中被影响的节点最多且信息传播范围最广。仿真实验结果表明,在大规模社会网络中,该算法对社会网络节点的影响范围广且时间复杂度低。  相似文献   

7.
个性化影响最大化问题是近年来社交网络影响最大化问题研究领域一个较新的分支,其现有解决方案普遍建立在网络边影响传播强度一致的假设下,该假设对于真实社交网络缺乏普遍适用性。为此基于独立级联模型,提出最大影响路径算法(MIPA)。该算法通过三个阶段来求解个性化影响最大化问题,首先将边影响强度作对数转换以获得最大影响路径,从而计算网络节点对目标节点的邻居节点的影响;然后利用多条经过目标节点邻居的最大影响路径联合计算目标节点受到的影响强度;最后选择Top-k节点作为种子节点,从而摆脱边影响强度的一致性约束,获取高质量的种子集。在不同的真实社交网络数据集上进行的对比实验验证了算法的有效性。  相似文献   

8.
张平  王黎维  彭智勇  岳昆  黄浩 《软件学报》2017,28(8):2161-2174
影响最大化旨在从给定社会网络中寻找出一组影响力最大的子集.现有工作大都在假设实体点(个人或博客等)影响关系已知的情况下,关注于分析单个实体点的影响力.然而在一些实际场景中,人们往往更关注区域或人群等这类团体的组合影响力,如:户外广告,电视营销,疫情防控等.本文研究了影响力团体的选择问题:(1)基于团体的关联发现,我们建立了团体传播模型GIC(Group Independent Cascade);(2)根据GIC模型,我们给出了贪心算法CGIM(Cascade Group influence maximization)搜索最具影响力的top-k团组合.在人工数据和真实数据上,实验验证了我们方法的效果和效率.  相似文献   

9.
影响最大化问题是在社交网中寻找对传播项最具影响力的种集,使得传播项的传播范围最大.目前的研究只考虑了传播项上主题的分布,而忽略了用户本身的兴趣分布.在传播项的主题分布和用户的兴趣分布都被考虑的条件下,研究如何选取最具影响力的种集.首先提出了基于主题兴趣的独立级联传播模型TI-IC,并利用期望最大化算法求学习TI-IC模型参数;然后在TI-IC模型基础上提出了基于主题兴趣的影响最大化问题TIIM,并提出了求解TIIM问题的启发式算法ACG-TIIM.ACG-TIIM首先构造以每个用户为根的可达路径树,快速粗略预估每个用户的影响范围;然后根据预估的影响范围排序所有结点并选择少量结点作为候选种子;最后使用带有EFLF优化的贪心算法从候选种子中选择最具影响力的种集.多个真实数据集上的实验结果表明:在描述传播规律和预测传播结果方面,TI-IC模型优于经典的IC模型和TIC模型.ACG-TIIM算法可以有效并高效地求解基于主题兴趣的影响最大化问题.  相似文献   

10.
杨书新  梁文  朱凯丽 《计算机应用》2020,40(7):1944-1949
已有社交网络影响力传播的研究工作主要关注单源信息传播情形,较少考虑对立的传播形式.针对对立影响最大化问题,扩展热量传播模型为多源热量传播模型,并提出一种预选式贪心近似(PSGA)算法.为验证算法有效性,选取7种具有代表性的种子挖掘方法,以对立影响最大化传播收益、算法运行时间及种子的富集程度为评价指标,在不同种类社会网络...  相似文献   

11.
社交网络中影响最大化问题是寻找具有最大影响范围的节点。影响最大化的大部分求解算法仅仅依赖社交网络图。基于微博的转发关系树和微博内容的情感倾向性,以及用户的社交网络图,提出了一个能够刻画用户情感影响的情感影响最大化模型——情感影响分配模型(sentiment influence distribution,SID),证明了SID模型下的情感影响最大化问题是一个NP难问题,给出了一个具有精度保证的贪心算法。在真实的微博数据上的实验结果表明,SID模型能够有效地找出情感影响最大化的节点集,同时具有很高的扩展性。  相似文献   

12.
影响力最大化问题是在复杂社会网络中选择一小部分用户在特定传播模型下最大化影响扩散。基于贪心的蒙特卡洛模拟方法在理论上保证近乎最优的解决方案,但算法运行效率很低。虽然已经开发出许多没有理论保证的启发式方法,但都大大降低了解决方案的质量。为解决该问题,提出局部概率解策略计算节点集的影响力,其性能近似于蒙特卡洛模拟,并且提出基于免疫遗传的影响力最大化算法。在4个真实数据集上的实验表明所提算法在解决影响力最大化问题上的高效性。在影响力传播范围上,和当前表现最好的CELF算法有极其相近的性能,且运行效率比CELF算法快大约5个数量级。  相似文献   

13.
社交网络的影响力最大化是网络分析领域的关键问题,在广告宣传、舆情控制等场景有着诸多应用.该问题指在一个社交图中选取一组源节点,使得所选取的节点集合能够在某种传播模型中形成最大的影响力.由于节点选取问题是典型的NP-hard问题,在大型网络中会遭遇组合爆炸.近些年来,国内外学者一般采用启发式算法求得问题的近似解.然而,现...  相似文献   

14.
Web媒体被公认为继报纸、广播、电视之后的"第四媒体"。而Web2.0的迅速普及,又使当今的Web媒体呈现了一种"自媒体"形式,即每个用户既是信息的接受者,也是信息发布者和信息转发者,因此,在当今的Web上形成了在线社会网络。研究表明在线社会网络呈现出一种很强的"模块性"("社区性"),因此,在在线社会网络中,社区发现一直是一个研究热点,即如何设计算法以发现大规模社会网络中的社区结构。文章提出了一种基于拉普拉斯矩阵的在线社会网络社区发现算法,该算法将在线社会网络转换成以拉普拉斯矩阵形式表现,通过计算该矩阵的谱并利用其性质发现社会网络上的社区结构。文章同时针对人造数据集与真实数据集进行了实验,实验结果表明本算法能够有效的发现社会网络中的社区结构。  相似文献   

15.
在新冠肺炎疫情期间,社交媒体以前所未有的速度向全世界传播消息.然而,扭曲信息隐藏在海量社交数据中,对国家安全、社会稳定提出了前所未有的挑战.目前的干预措施大多是建立在对关键节点和关键链路进行控制的基础之上,即删帖和封号,往往效果不佳且容易产生副作用.基于扭曲信息的定义和分析,打破传统思维的限定,在信息蔓延过程中通过发布...  相似文献   

16.
影响力最大化问题是在社交网络中寻找具有最大影响范围的节点集。针对启发式算法准确度相对较差的问题,现有的研究考虑了影响范围重合,但忽略了边缘贡献导致的节点影响力过量评估。重点研究了在考虑边缘贡献的情况下,如何选取影响范围最大的节点集合。采用启发式算法的思想,首先计算节点全局和邻近影响力来评估节点信息传播影响力,通过去除已选节点影响范围并更新网络的方式,消除边缘贡献对节点影响力评估的干扰,在独立级联模型基础上提出了基于边缘去重的节点影响力最大化算法。仿真结果表明所提出算法相比其他算法,能够有效增大节点信息传播影响范围。  相似文献   

17.
基于位置的社会化网络推荐系统   总被引:1,自引:0,他引:1  
近年来,基于位置的社会化网络推荐系统逐渐成为位置服务和社会网络分析的活跃课题之一.挖掘用户签到位置轨迹和社交活动数据,提取用户社会活动的地理空间特征模型及其与社会关系的关联性,设计合理的推荐算法,成为当前基于位置的社会化网络推荐系统的主要任务.该文从分析基于位置的社会化网络的结构特征人手,对基于位置的社会化网络推荐系统的基本框架、基于不同网络层次数据挖掘的推荐方法及应用类型等进行前沿概况、比较和分析.最后对有待深入研究的难点和热点进行分析和展望.  相似文献   

18.
社交网络影响力传播重点关注如何使用少量的种子集合在社交网络中产生尽可能高的影响力,并将转发作为信息传播的唯一方式,忽略了其他传播方式,例如用户可通过发布一条与所见信息内容相似的信息来进行传播,这种传播方式(称为转述)因为难以追踪,所以存在隐私泄漏的风险.针对上述问题,定义了一种支持转述关系的社交网络信息传播模型,提出了...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号