首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
平板金属爆炸焊接过程数值模拟   总被引:3,自引:2,他引:3       下载免费PDF全文
王呼和  佟铮 《焊接学报》2010,31(9):101-104,108
利用大型有限元软件ANSYS/LS-DYNA对平板金属爆炸焊接过程进行了数值模拟,获得了爆炸焊接过程中形成的射流及波形,模拟结果与试验结果表现出良好的一致性.数值模拟结果证明,数值模型较准确的反映了爆炸焊接射流和波形的形成过程.同时,输出特征点压力和速度—时间曲线可显示出起爆近点压力小于起爆远点压力.在相同药层厚度条件下,起爆近点爆炸复合能量不足,易出现雷管区边界效应,影响焊接质量.此外,通过数值计算碰撞点压力与速度分布,并与理论计算结果进行了比较,说明数值计算值与理论计算值误差不超过5%,可有效指导爆炸焊接参数的选择.  相似文献   

2.
为探究炸药覆盖层厚度对爆炸焊接的影响,采用ANSYS/LS-DYNA软件并结合SPH-FEM耦合算法,对不同覆层厚度下的爆炸焊接试验进行三维数值模拟.文中采用厚度为20 mm的Q235钢和厚度为2.5 mm的304不锈钢作为基板和复板.根据相应的材料参数理论计算了焊接过程中的动态参数,并以此建立爆炸焊接窗口.仿真结果表明,与无覆盖层爆炸焊接相比,覆盖层厚度为15 mm、 30 mm和45 mm时冲击速度分别提高了39.3%, 58.1%和68.8%,碰撞压力分别增大了41.0%, 65.6%和80.6%.仿真结果与试验结果基本一致.利用SPH法进行二维数值模拟,得到了装配炸药覆盖层时复板与基板的复合界面.仿真结果表明,复合板在覆层厚度为15 mm时具有良好的波形复合界面,且界面波形与试验金相分析结果较为吻合.  相似文献   

3.
由于爆炸焊的瞬时性和不可接触性,爆炸焊数值模拟研究尤为重要。本文对爆炸焊近年来在数值模拟方面的研究进行了综述,重点分析了目前爆炸焊数值模拟研究中存在的问题与不足,阐述了未来爆炸焊数值模拟研究的发展方向。  相似文献   

4.
为了揭示造成爆炸焊接边界效应的机理,文中借助LS-DYNA软件,采用无网格的SPH法分别对复板厚度为2 mm、基板厚度为16 mm的Q235/Q235、TA2/Q235、304不锈钢/Q235复合板进行爆炸焊接边界效应的二维数值模拟. 观察不同组模拟过程中的复板飞行姿态,复板撕裂均发生在与基板碰撞之前. 当基板保持一致,炸药分别为乳化炸药与膨化铵油混合炸药,复板为TA2时均比复板为Q235钢以及304不锈钢的撕裂尺寸更大;当基板、复板均为Q235钢,乳化炸药条件下比膨化铵油混合炸药条件下复板的撕裂尺寸更大. 结果表明,在复板、炸药变化的情况下,爆炸焊接的边界效应依旧存在,只是产生的边界效应的严重程度有所不同;复板极限抗拉强度越低或炸药爆轰速度越高,边界效应现象越严重.  相似文献   

5.
以爆炸焊接理论为基础,采用数值模拟方法,在软件ANSYS/LS-DYNA上模拟AZ31B镁合金和5052铝合金的爆炸焊接过程,并与实验结果进行对比.结果 表明:爆炸焊接过程中能量是以波的形式进行规律传递,爆炸时覆板与炸药的接触面最大的等效应力可以达到1.802 GPa.通过SEM对结合面进行微观观察,可以看出数值模拟结...  相似文献   

6.
铝/钛复合管爆炸焊接三维数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
邓伟  陆明  田晓洁 《焊接学报》2014,35(12):63-66
复合管爆炸焊接在工艺上的差异性决定了其焊接过程与复合板焊接过程不同,而复合管爆炸焊接作用空间的相对密闭导致观察和分析其焊接过程的困难,通过软件AUTODYN模拟出了复合管爆炸焊接过程,在验证模型正确有效的基础上,分析了复合管射流产生以及结合界面波形结构的独特性,发现射流产生波状结合满足侵彻机理假说.对比爆炸焊接试验结果表明,模拟结果与试验结果具有良好的一致性,这为研究复合管波形结构以及射流形成机理等提供了重要手段.  相似文献   

7.
不锈钢焊接温度场的三维数值模拟   总被引:26,自引:5,他引:26       下载免费PDF全文
分别详细分析了焊接热源的三种计算模型即高斯热源模型、双椭圆高斯热源模型及双椭球热源模型的数学表达式与物理特点。利用三维有限元网格划分技术,对工件进行网格划分,并采用网格自适应技术对焊缝金属的网格进行自动加密与生成,为缩短焊接过程数值模拟时间创造了条件。在此基础上又对其中两种焊接热源模型所建立的温度场进行了计算,得到了不锈钢SUS310材料温度场的分布规律,研究了各种参数对温度场分布的影响,并与工艺试验结果进行了比较,提出了适合三维有限元分析的最佳焊接热源模型。  相似文献   

8.
大面积钛/钢复合板爆炸焊接过程的数值模拟   总被引:3,自引:0,他引:3  
利用大型非线性有限元程序ANSYS/LS-DYNA对大面积钛/钢复合板的焊接过程进行数值模拟,研究了覆板的应力情况,给出了覆板上几个特殊点的应力、等效塑性应变等随时间的变化曲线,从理论上对爆炸焊接裂纹产生的原因进行了分析研究,为进一步合理选择爆炸焊接参数、预防裂纹产生和实现大面积复合板的批量生产提供了依据.  相似文献   

9.
焊接过程三维应力变形数值模拟研究进展   总被引:8,自引:1,他引:7       下载免费PDF全文
焊接非平衡加热、冷却过程导致产生焊接应力与变形,严重影响焊接过程及结构的服役行为,是焊接结构生产制造过程中必须解决的关键技术问题之一。作者对目前国内外焊接过程中焊接应力与变形的数值模拟研究及工程应用进行了分析。结合研究小组的研究工作,对大型复杂结构焊接过程中三维焊接应力变形数值模拟存在的困难、需要解决的主要技术问题进行了评述,并介绍了几个工程应用实例。  相似文献   

10.
间隙对三层圆管爆炸焊接影响的数值模拟   总被引:4,自引:1,他引:3       下载免费PDF全文
马贝  李宏伟  常辉  胡锐 《焊接学报》2009,30(9):33-36,40
爆炸焊接工艺是实现异种材料冶金结合的先进连接工艺,间隙是影响焊接质量的重要工艺参数.基于ANAYS/LS-DYNA平台建立了钢一铜一铜三层圆管爆炸焊接的三维有限元模型,研究了不同间隙下的成形过程和焊接质量.结果表明,当间隙1和间隙2分别设置为复管1厚度的1/4-1倍和复管2厚度的1/2-2倍时可实现良好复合;复合管的最大塑性应变和最大有效应力受间隙影响较小,却在6μs时间内极速增大并趋于稳定;间隙1的大小同时影响复管1和复管2的加速运动,而间隙2只影响复管2的加速运动.  相似文献   

11.
采用非线性动力有限元法建立了大面积钛/钢复合板爆炸复合的有限元模型,实现了对复板运动过程的三维有限元模拟。通过实验对比了不同间隙条件下复板运动过程的竖直方向位移来优化爆炸焊接工艺参数。研究表明,当间隙高度为6 mm时,复合板结合率最高;爆炸复合后成品波形规则,性能满足标准要求。  相似文献   

12.
以铜/钢复合管为研究对象,利用AUTODYN有限元软件SPH和ALE法对爆炸焊接过程进行二维数值模拟,分析了焊接动态过程和边界效应问题,并对铜/钢复合管进行了爆炸焊接试验。结果表明,在爆轰波作用下,复管与基管发生倾斜碰撞,碰撞区域压力稳定在107 kPa的数量级,在碰撞区附近出现1条塑性变形带,且复管和基管上的剪切应力相反,界面形态随着爆炸波的传播从直线变为波状,这与试验中获得的T2/316L双金属复合管的实际界面形态一致,说明有限元模型能够有效模拟双金属复合管爆炸焊接过程。数值模拟过程中边缘动态参数值均小于正常值,存在边界效应,增加复管和炸药的长度可以消除边界效应。  相似文献   

13.
为了研究爆炸焊接参数对界面波形的影响,对钽/304不锈钢的爆炸焊接进行了二维数值模拟,模拟得到了不同碰撞角和碰撞速度的界面波。由输出模拟界面处波形图可观测到钢在爆轰过程中被拉长且在涡旋处强烈弯曲;测量波的波长以及波幅发现,当碰撞速度一定时,比波长由小到大依次为碰撞角12.2°、碰撞角14.1°、碰撞角16.4°;碰撞角一定时,碰撞速度为633 m/s界面波长和波幅小于碰撞速度为735 m/s时的界面波长和波幅;速度水平方向的数值大小与波长数值的大小一致性较好,速度竖直方向的数值大小与波幅数值的大小一致性较好。结果表明,结合界面处和界面附近的钢侧均发现了明显的解理断裂特征;界面处比波长与碰撞角呈正相关;碰撞速度越大,界面波长和波幅也越大;速度水平方向的分量决定波长数值的大小,速度竖直方向的分量决定波幅数值的大小。创新点: (1)结合光滑粒子流体动力学方法,采用单参数变化方法研究碰撞角和碰撞速度对界面波形的影响。(2)研究了速度的水平分量以及竖直分量对界面波形的影响。  相似文献   

14.
为降低使用成本,充分发挥镍材优异的耐腐蚀性能优势,选用厚度1 mm的纯镍N6作为复板、3 mm厚的中碳钢45#作为基板进行爆炸焊接试验。通过爆炸焊接窗口计算出了各动态参数,采用金相光学显微镜和扫描电镜对界面结合形貌和元素进行分析,通过拉剪试验测试复合板力学性能,并借助AUTODYN模拟了爆炸焊接过程。结果表明,爆炸点附近存在边界效应,沿着爆炸焊接方向结合界面由平直状转变为稳定的波状界面,界面附近元素扩散层厚度为20 μm,波状的扩散层增大了结合面积,有利于冶金结合,复合板剪切强度达到325.5 MPa。数值模拟结果表明,界面形貌与试验得到的界面形貌具有一致性。模拟结果表明特征点的速度和塑性变形程度与实验结果基本吻合。  相似文献   

15.
为了研究在爆炸焊接过程中波状界面的形成机理,本文采用对不同强度基板爆炸焊接实验与SPH数值模拟相结合的方式对试样界面形貌及其焊接过程进行了分析。实验发现当焊接参数在可焊窗口以内时,强度较低的材料界面比较容易形成周期性波纹,而且数值模拟结果显示在碰撞点后两个周期的范围内,界面粒子仍然具有较高的运动速度并沿界面持续运动形成界面波;而强度较高且表面光滑的材料则难以形成波状界面。结果表明:爆炸焊接波状界面的形成需要扰动的积累进而触发Bahrani刻入机理,而当界面缺少扰动时则难以形成波状界面;在碰撞点离开后的两个周期范围内,波状界面的熔融金属将沿界面持续运动最终形成稳定的界面波。  相似文献   

16.
采用非线性动力有限元法建立了复合板在爆炸焊接过程中的有限元计算模型,对复合板运动状态进行了模拟和分析.利用有限元软件的网格划分功能建立了5/41mill×3850min×6650mm钛/钢复合板模型,实现了对复板运动过程的三维有限元模拟.实验研究了不同间隙条件下复板运动过程的位移云图,并通过对实验结果进行比较与分析后,确定当间隙高度为8min时,爆炸焊接后复板上各点的最终位移都达到了8mm,复合板结合率为100%.该研究为大面积钛钢复合板的爆炸焊接工艺参数的制定提供了依据.  相似文献   

17.
周壮壮  陈放 《焊接学报》2023,41(8):41-48
结合复合杆的结构特性,推导出考虑复管收缩产生塑性功影响的Gurney公式,并运用该公式对复管的碰撞速度进行计算,探究复管受冲击波驱动变形产生塑性功对碰撞速度的影响,并提出一种新型的刻槽式复管结构,通过该结构可以获得较好的焊接质量. 通过理论计算与有限元分析结果表明,普通圆管形钢管在基杆与复管间隙为3.5 mm时,炸药爆炸驱动复管获得的动能被塑性变形全部抵消,其碰撞速度为0,理论计算与仿真结果一致性较好;而在同等条件下,所设计的刻槽式复管结构仿真结果表明,其碰撞速度可以达到667.85 m/s,碰撞角度为13.877°,满足焊接下限碰撞速度要求. 基于此,二维微观仿真分析结果表明,结合界面处呈现出周期性波纹,并产生大量射流,在结合界面处温度超过两种金属的熔化温度,结合界面质量较好.  相似文献   

18.
  总被引:2,自引:0,他引:2  
There are four new achievements of this work on the theory and technology of explosive welding.(1) It has been found and defined three kinds of bonding interfaces: big wavy, small wavy and micro wavy, and the micro wavy interface is the best. In a cladding plate, it is for the first time to find that the form of interface presents regular distribution.(2) Although the interface has the features of melt, diffusion and pressure welding in the mean time, the seam and \"hole\" brought by the melt weaken the bonding strength of interface greatly, and the effect of melt on interface must be eliminated in explosive welding, so explosive welding is not a melt weld. The diffusion welding is a kind of form of pressure welding, and the diffusion is not the reason of the bonding of interface but the result of interface high pressure. So the diffusion welding cannot also explain the bonding mechanism of it. The experiment and theory make clear that explosive welding is a special pressure one.(3) To get good interface  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号