首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
室内空气中苯系物监测技术的研究进展   总被引:5,自引:0,他引:5  
谢振伟  但德忠 《中国测试技术》2005,31(5):127-129,144
室内空气中苯系物的测定是评价室内环境质量的重要指标之一,针对目前苯系物测定中存在的问题,本文综述了近年来国内外在苯系物的采样及测试技术上的进展,重点评述了各种采样技术(容器捕集法、固体吸附剂采样法和固相微萃取法等)以及以气相色谱法为主的分析方法,并对一些非色谱法的分析技术进行了简介,介绍了同时测定苯系物和总挥发性有机物两个指标监测技术的最新研究进展。  相似文献   

2.
对比了采用标准曲线法和单点校正法测定氮气中苯系物的异同,讨论了单点校正法的测定范围,并分析了单点校正法的不确定度评定过程,说明了其不确定度的主要来源以及其中存在的问题.  相似文献   

3.
Soil vapor extraction (SVE) coupled with air sparging of groundwater is a method commonly used to remediate soil and groundwater contaminated with volatile organic petroleum contaminants such as gasoline. These hazardous contaminants are mainly attributable to the compounds-benzene, toluene, ethylbenzene, and xylenes (known collectively as BTEX). Exhaust gas from SVE may contain BTEX, and therefore must be treated before being discharged. This study evaluated the use of iron-activated persulfate chemical oxidation in conjunction with a wet scrubbing system, i.e., a persulfate oxidative scrubber (POS) system, to destroy BTEX gases. The persulfate anions can be activated by citric acid (CA) chelated Fe(2+) to generate sulfate radicals (SO(4)(*-), E degrees =2.4V), which may rapidly degrade BTEX in the aqueous phase and result in continuous destruction of the BTEX gases. The results show that persulfate activation occurred as a result of continuous addition of the citric acid chelated Fe(2+) activator, which readily oxidized the dissolved BTEX. Based on initial results from the aqueous phase, a suitable Fe(2+)/CA molar ratio of 5/3 was determined and used to initiate activation in the subsequent POS system tests. In the POS system, using persulfate as a scrubber solution and with activation by injecting Fe(2+)/CA activators under two testing conditions, varying iron concentrations and pumping rates, resulted in an approximate 50% removal of BTEX gases. During the course of the tests which in corporate activation, a complete destruction of BTEX was achieved in the aqueous phase. It is noted that no removal of BTEX occurred in the control tests which did not include activation. The results of this study would serve as a reference for future studies into the practical chemical oxidation of waste gas streams.  相似文献   

4.
Biofiltration of air stream containing mixture of benzene, toluene, ethyl benzene and o-xylene (BTEX) has been studied in a lab-scale biofilter packed with a mixture of compost, sugar cane bagasse and granulated activated carbon (GAC) in the ratio 55:30:15 by weight. Microbial acclimation was achieved in 30 days by exposing the system to average BTEX inlet concentration of 0.4194 gm(-3) at an empty bed residence time (EBRT) of 2.3 min. Biofilter achieved maximum removal efficiency more than 99% of all four compounds for throughout its operation at an EBRT of 2.3 min for an inlet concentration of 0.681 gm(-3), which is quite significance than the values reported in the literature. The results indicate that when the influent BTEX loadings were less than 68 gm(-3)h(-1) in the biofilter, nearly 100% removal could be achieved. A maximum elimination capacity (EC) of 83.65 gm(-3)h(-1) of the biofilter was obtained at inlet BTEX load of 126.5 gm(-3)h(-1) in phase IV. Elimination capacities of BTEX increased with the increase in influent VOC loading, but an opposite trend was observed for the removal efficiency. The production of CO(2) in each phase (gm(-3)h(-1)) was also observed at steady state (i.e. at maximum removal efficiency). Moreover, the high concentrations of nitrogen in the nutrient solution may adversely affect the microbial activity possibly due to the presence of high salt concentrations. Furthermore, an attempt was also made to isolate the most profusely grown BTEX-degrading strain. A Gram-positive strain had a high BTEX-degrading activity and was identified as Bacillus sphaericus by taxonomical analysis, biochemical tests and 16S rDNA gene analysis methods.  相似文献   

5.
A sol-gel based solid phase microextraction fiber for headspace sampling (HP-SPME) and GC determination of benzene, toluene, ethylbenzene and xylenes (BTEX) is introduced. The influences of fiber composition, microextraction conditions such as temperature and time on the fiber performance and desorption temperature and time were investigated. Under optimal conditions, the use of proposed fiber was thermally stable up to 250 degrees C and demonstrated high sensitive and fast sampling of BTEX from gaseous phase. Depending on the analysed substance, the linear range for a selected fiber and the applied GC-FID technique was from 4 to 80 ng mL(-1)with limit of detection (LOD) 0.2-0.7 ng mL(-1) and 100-1000 ng mL(-1) with LOD 8-20 ng mL(-1) for gaseous and soil samples, respectively. HP-SPME-GC analysis was highly reproducible-relative standard deviations (R.S.D.) were between 5.0 and 7.9%. The proposed fiber was successfully used for BTEX sampling from indoor air and headspace of soil samples.  相似文献   

6.
The adsorptive and catalytic characteristics of waste-reclaimed adsorbent (WR), which is a calcined mixture of bottom-ash and dredged-soil, was investigated for its application to treating BTEX contamination. BTEX adsorption in WR was 54%, 64%, 62%, and 65%, respectively, for a 72 h reaction time. Moreover, the catalytic characteristics of WR were observed when three types of oxidation systems (i.e., H(2)O(2), persulfate (PS), and H(2)O(2)/Fe(III)/oxalate) were tested, and these catalytic roles of WR could be due to iron oxide on its surface. In PS/WR system, large amounts of metal ions from WR were released because of large drops of solution pH, and the surface area of WR was also greatly reduced. Moreover, the BTEX that was removed per consumed oxidant (ΔC(rem)/ΔOx) increased with increasing PS. In H(2)O(2)/Fe(III)/oxalate with WR system, the highest BTEX degradation rate constants (k(deg)) were calculated as 0.338, 0.365, 0.500 and 0.716 h(-1), respectively, when 500 mM of H(2)O(2) was used, and the sorbed BTEX on the surface of WR was also degraded, which suggests the regeneration of WR. Therefore, the oxidant-injected permeable reactive barrier filled in WR could be an alternative to treating BTEX with both adsorption and catalytic degradation.  相似文献   

7.
Adsorption of BTEX from aqueous solution by macroreticular resins   总被引:2,自引:0,他引:2  
Theoretical and experimental investigations were conducted on the adsorption of benzene, toluene, ethylbenzene and xylene (BTEX) by macroreticular resins. A mass transfer model based on the squared-driving force principle is presented for describing the BTEX transfer between the aqueous and solid phases. Also proposed is a theoretical model for describing the BTEX breakthrough curves of the adsorption column. While the mass transfer model involves only an overall mass transfer coefficient, the column adsorption model has two model parameters. Those parameters are conveniently estimated using the observed mass transfer and breakthrough data. The predictions using the proposed models were found to compare well with the experimental data of batch and column BTEX adsorption tests.  相似文献   

8.
The removal of benzene, toluene, ethylbenzene and xylene (BTEX) as quaternary mixtures were studied in batch systems using a well-defined mixed microbial culture. The synergistic and antagonistic effects of total BTEX removal (BTEXT-RE) due to the presence of mixed substrate was evaluated through experiments designed by response surface methodology (RSM). The low and high concentrations of individual BTEX were 15 and 75 mg l(-1), respectively. The results showed that, increasing the concentration of xylene increased the cumulative BTEX removal (BTEXT-RE), however the reverse occurred when benzene concentrations were increased from low to high levels. A mixed response of increasing and decreasing trend in the BTEXT-RE value was observed when either of toluene or ethylbenzene concentration was increased. When the concentrations of individual BTEX compounds were 30 mg l(-1), the BTEXT-RE was about 58%. Complete BTEXT-RE was achieved at optimal BTEX concentrations of 48.1, 45.6, 49.3 and 56.6 mg l(-1). The RSM approach was found efficient in explaining the main, squared and interaction effects among individual BTEX concentrations on the BTEXT-RE in a more statistically meaningful way.  相似文献   

9.
A way to extract useful chemical information from the volatile profile provided by a headspace-mass spectrometer (HS-MS) is developed in order to improve sensitivity in HS-MS analysis. The methodology is based on the selection of a narrow window in the volatile profile where the signal-to-noise ratio was maximal by combining the data acquisition time and scan rate. To test this approach, benzene, toluene, ethylbenzene, and p-xylene (BTEX) as well as their mixtures were quantified in drinking waters. Individual hydrocarbons were determined between 1 and 30 microg/L (mean RSD, 4.0% for 10 microg/L) while mixtures were quantified at a microgram per liter level by using the partial least-squares multivariate algorithm with a relative standard prediction error of under 3.5%. These results indicate that the method proposed is useful as a sensitive and selective tool for the determination of BTEX and surpasses other reported HS-MS alternatives. In addition, the proposed methodology can be extended to others that insert analytes from a sample directly into a MS, such as membrane introduction mass spectrometry among others.  相似文献   

10.
研制出一种名为VOC-SEP200新型中空纤维疏水性复合膜,并考察了这种复合膜从水中分离BTEX(苯、甲苯、乙苯和二甲苯)的性能.这4种芳香碳氢化合物是工业有机废水中的一组有代表性的污染物,本研究的最终目的是想从现实的工业废水中回收这些化合物.采用料液在纤维中孔流动的方式,系统考察了进料液流速、操作压力、温度和进料液浓度对膜分离效率及膜性能的影响.结果显示,随着进料液流速的提高,BTEX的通量随之增大.这是由于随着进料液流速的提高,浓度极化的影响会减少,同时BTEX和水的分离因子会有显著增大.结果还显示,膜的性能随膜横向的驱动力降低而提高,其最佳的渗透压范围是10.7~13.3kPa(即80~100mmHg),此时BTEX通量达到最大平稳值,同时水的通量最小.提高渗透压可减少操作费用,同时可增强分离效果,和预期的情况一样,BTEX和水的渗透通量都随着温度和进料浓度的提高而增大,但再进一步提高浓度和温度,则对水通量不产生影响.水通量在初始阶段的增加可以归因于膜的溶胀,水通量不再随温度和浓度的进一步升高而增加,可以归因于水分子的聚集与膜的溶胀达到了平衡,  相似文献   

11.
Evaluation of natural attenuation rate at a gasoline spill site   总被引:10,自引:0,他引:10  
Contamination of groundwater by gasoline and other petroleum-derived hydrocarbons released from underground storage tanks (USTs) is a serious and widespread environmental problem. Natural attenuation is a passive remedial approach that depends upon natural processes to degrade and dissipate contaminants in soil and groundwater. Currently, in situ column technique, microcosm, and computer modeling have been applied for the natural attenuation rate calculation. However, the subsurface heterogeneity reduces the applicability of these techniques. In this study, a mass flux approach was used to calculate the contaminant mass reduction and field-scale decay rate at a gasoline spill site. The mass flux technique is a simplified mass balance procedure, which is accomplished using the differences in total contaminant mass flux across two cross-sections of the contaminant plume. The mass flux calculation shows that up to 87% of the dissolved total benzene, toluene, ethylbenzene, and xylene (BTEX) isomers removal was observed via natural attenuation at this site. The efficiency of natural biodegradation was evaluated by the in situ tracer method, and the first-order decay model was applied for the natural attenuation/biodegradation rate calculation. Results reveal that natural biodegradation was the major cause of the BTEX mass reduction among the natural attenuation processes, and approximately 88% of the BTEX removal was due to the natural biodegradation process. The calculated total BTEX first-order attenuation and biodegradation rates were 0.036 and 0.025% per day, respectively. Results suggest that the natural attenuation mechanisms can effectively contain the plume, and the mass flux method is useful in assessing the occurrence and efficiency of the natural attenuation process.  相似文献   

12.
This study investigates the toxicity of various pollutant species from motorcycle exhaust via dose-response analysis and margin of safety using Escherichia coli DH5 alpha. The toxicity evaluation of the major components of motorcycle exhaust volatile organic compounds (VOCs), collected with impinger, and polycyclic aromatic hydrocarbons (PAHs), collected with filter and XAD-2, is essential to determine emission standards for motorcycles. The toxicity of benzene (B), toluene (T), ethyl benzene (E) and xylene (X) was selected for comparison as standard VOCs emitted from motorcycles. In addition, three types of reformulated gasoline (high oxygenate and high benzene content (No. 1), low oxygen and high benzene (No. 2), and low oxygen and low benzene (No. 3) were prepared to reveal combined toxicity of individual compositions. Motorcycle exhaust is significantly more toxic than BTEX due to the highly toxic VOCs generated from incomplete combustion. Overall toxicity evaluation showed that the toxicity, indicated as EC50, was approximately as follows: PAHs>two-stroke engines>four-stroke engines>BTEX.  相似文献   

13.
We fabricated a microfluidic device for the optical detection of airborne benzene, toluene, ethylbenzene and xylenes (BTEX). The device consists of concentration and detection cells formed of 3 cm x 1 cm Pyrex plates. The concentration cell is composed of an adsorbent to concentrate the BTEX gases and a thin-film heater todesorb the concentrated gases from the adsorbent thermally. The collected gases are introduced into the detection cell, which is connected to optical fibers, to measure their absorption spectra. We optimized the device's operating conditions by studying the thermal characteristics of the concentration cell and the time profile of the gas concentration flowing in the detection cell. We used the device under optimized operating conditions to detect toluene gas as a typical example BTEX. The gas concentration amplification rate was approximately 2 orders of magnitude, and we successfully measured parts-per-million levels of toluene gas with this device.  相似文献   

14.
A simple, cost-effective analysis combining solventless extraction, thermal desorption, and determination of volatile organic compounds (VOCs) was developed and validated. A needle trap device (NTD) packed with the sorbent Carboxen1000 was used as a time-weighted average (TWA) diffusive sampler to collect target compounds by molecular diffusion and adsorption to the packed sorbent. This process can be described with derivations of Fick's first law of diffusion, which expresses the relation between the TWA concentrations to which the passive sampler is exposed and the mass of analytes adsorbed to the packed sorbent in the sampler. The effects of experimental factors such as temperature, pressure, humidity, and face velocity were taken into account in applying diffusive sampling under nonideal conditions. This study demonstrates that NTD is effective for air analysis of benzene, toluene, ethylbenzene, and o-xylene (BTEX), due to the good adsorption/desorption quality of Carboxen 1000 and to the special geometric shape of the needle with a small cross section avoiding the need for calibration. Storage tests showed good storage stability for BTEX. Verification of the theoretical model showed good agreement between theoretical and experimental sampling rates. Method validation done against NIOSH method 1501, SPME, and NTD active sampling revealed good agreement between those methods. Automated NTD sample introduction to a gas chromatograph facilitates the use of this technology for industrial hygiene applications.  相似文献   

15.
Multi-phase extraction (MPE) is commonly used at petroleum-contaminated sites to volatilize and recover hydrocarbons from the vadose and saturated zones in contaminant source areas. Although primarily a physical treatment technology, the induced subsurface air flow can potentially increase oxygen supply and promote aerobic biodegradation of benzene, toluene, ethylbenzene, and xylenes (BTEX), the contaminants of concern at gasoline-contaminated sites. In this study, real-time PCR enumeration of aromatic oxygenase genes and PCR-DGGE profiles were used to elucidate the impact of MPE operation on the aquifer microbial community structure and function at a gasoline-contaminated site. Prior to system activation, ring-hydroxylating toluene monooxygenase (RMO) and naphthalene dioxygenase (NAH) gene copies were on the order of 10(6) to 10(10)copies L(-1) in groundwater samples obtained from BTEX-impacted wells. Aromatic oxygenase genes were not detected in groundwater samples obtained during continuous MPE indicating decreased populations of BTEX-utilizing bacteria. During periods of pulsed MPE, total aromatic oxygenase gene copies were not significantly different than prior to system activation, however, shifts in aromatic catabolic genotypes were noted. The consistent detection of RMO, NAH, and phenol hydroxylase (PHE), which catabolizes further oxidation of hydroxylated BTEX metabolites indicated the potential for aerobic biodegradation of dissolved BTEX during pulsed MPE.  相似文献   

16.
Methyl-tert-butyl ether (MTBE) is a gasoline oxygenate and antiknock additive substituting for lead alkyls currently in use worldwide. Benzene, toluene, ethylbenzene, and xylene (BTEX) are volatile monoaromatic hydrocarbons which are commonly found together in crude petroleum and petroleum products such as gasoline. The aim of this study is to evaluate the genotoxic effects of these tested chemicals in human lymphocytes. Using the alkaline comet assay, we showed that all of the tested chemicals induce DNA damage in isolated human lymphocytes. This effect could follow from the induction of DNA strands breaks. The neutral version of the test revealed that MTBE, benzene, and xylenes induce DNA double-strand breaks at 200 microM. Apart from MTBE, the spin traps, 5,5-dimethyl-pyrroline-N-oxide (DMPO) and N-tert-butyl-alpha-phenylnitrone (PBN) can decrease the level of DNA damage in BTEX at 200 microM. This indicated that DNA damage could result from the participation of free radicals in DNA-damaging effect, which was further supported by the fact that post-treatment of formamidopyrimidine-DNA glycosylase (Fpg), enzyme recognizing oxidized DNA purines, gave rise to a significant increase in the extent of DNA damage in cells treated with benzene, and xylene at 200 microM. The results obtained suggested that MTBE and BTEX could induce a variety type of DNA damage such as single-strand breaks (SSBs), double-strand breaks (DSBs), and oxidative base modification.  相似文献   

17.
苯系物在工农业生产中使用相当广泛,是最常见的一类工业污染物,对人体有较大的毒性,需要严格控制排放。介绍了脱除工业废气中微量苯系物杂质的各种方法,综述了不同方法的应用条件及优缺点。  相似文献   

18.
The design and operation of air sparging and soil vapor extraction (AS/SVE) remediation systems remains in large an art due to the absence of reliable physically based models that can utilize the limited available field data. In this paper, a numerical model developed for the design and operation of air sparging and soil vapor extractions systems was used to simulate two field case studies. The first-order mass transfer kinetics were incorporated into the model to account for contaminant mass transfer between the water and air (stripping), NAPL and water (dissolution), NAPL and air (volatilization), and water and soil (sorption/desorption), the model also accounted for soil heterogeneity. Benzene, toluene, ethyl benzene and xylenes (BTEX) were the contaminants of concern in both case studies. In the second case study, the model was used to evaluate the effect of pulsed sparging on the removal rate of BTEX compounds. The pulsed sparging operation was approximated assuming uniform contaminant redistribution at the beginning of the shut-off period. The close comparison between the observed and simulated contaminant concentration in the aqueous phase showed that the approximation of the pulsed sparging operation yielded reasonable prediction of the removal process. Field heterogeneity was simulated using Monte Carlo analysis. The model predicted about 80-85% of the contaminant mass was removed by air-water mass transfer, which was similar to the average removal obtained by Monte Carlo analysis. The analysis of the removal/rebound cycles demonstrated that removal rate was controlled by the organic-aqueous distribution coefficient K(oc). Due to the lack of site-specific data, the aerobic first-order biodegradation coefficients (k(bio)) were obtained from a literature survey, therefore, uncertainty analysis of the k(bio) was conducted to evaluate the contribution of the aerobic biodegradation to total contaminant removal. Results of both case studies showed that biodegradation played a major role in the remediation of the contaminated sites.  相似文献   

19.
Rapid sampling and sample preparation methodology was investigated using adsorptive poly(dimethylsiloxane)/divinylbenzene and Carboxen/poly(dimethylsiloxane) solid-phase microextraction (SPME) fiber coatings and volatile aromatic hydrocarbons (BTEX: benzene, toluene, ethylbenzene, and o-xylene). A flow-through system was used to generate a standard aqueous solution of BTEX as model sample with known linear velocity. Parameters that affect the extraction process, including sampling time, concentration, water velocity, and temperature, were investigated. Very short sampling times from 10 s and sorbents with strong affinity and large capacity were used to ensure the effect of '"zero sink" and to calibrate the extraction process in the initial linear extraction region. Several different concentrations were investigated, and it was found that mass uptake changes with concentration linearly. The increase of water velocity increases mass uptake, though the increase is not linear. Temperature does not affect mass uptake significantly under typical field sampling conditions. To further accurately describe rapid SPME analysis of aqueous samples, a new model translated from heat transfer to a circular cylinder in cross-flow was used. An empirical correlation to this model was used to predict the mass-transfer coefficient. Findings indicate that predicted mass uptake compares well with experimental mass uptake. The new model was tested for rapid air sampling, and it was found that this new model also predicted rapid air sampling accurately. Findings presented in this study extend the existing fundamental knowledge related to rapid sampling/sample preparation with SPME.  相似文献   

20.
Anaerobic BTEX biodegradation linked to nitrate and sulfate reduction   总被引:3,自引:0,他引:3  
Effective anaerobic BTEX biodegradation was obtained under nitrate and sulfate reducing conditions by the mixed bacterial consortium that were enriched from gasoline contaminated soil. Under the conditions of using nitrate or sulfate as reducing acceptor, the degradation rates of the six tested substrates decreased with toluene>ethylbenzene>m-xylene>o-xylene>benzene>p-xylene. The higher concentrations of BTEX were toxic to the mixed cultures and led to reduce the degradation rates of BTEX. Benzene and p-xylene were more toxic than toluene and ethylbenzene. Nitrate was a more favorable electron acceptor compared to sulfate. The measured ratios between the amount of nitrate consumed and the amount of benzene, toluene, ethylbenzene, o-xylene, m-xylene, p-xylene degraded were 9.47, 9.26, 11.14, 12.46, 13.36 and 13.02, respectively. The measured ratios between sulfate reduction and BTEX degradation were 3.51, 4.33, 4.89, 4.81, 4.86 and 4.76, respectively, which were nearly the same to theoretical ones, and the relative error between the measured and calculated ratios was less than 10%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号