首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
《应用化工》2017,(7):1285-1289
通过水热合成法和共沉淀法分别制备了分子筛催化剂和Cu/ZnO催化剂,将分子筛与Cu/ZnO调控成双层串联催化剂,并用于二甲醚与合成气通过两段反应制备乙醇。研究了反应温度和反应气组成等因素对反应的影响,比较了分子筛类型、助剂种类和含量等对催化剂活性的影响。结果表明,随反应温度增加,DME转化率和乙醇选择性呈现先增加后减小趋势,随着DME含量减少和CO含量增加,DME转化率和乙醇选择性增加。H-MOR分子筛与Cu/ZnO串联催化剂显示了最佳的催化活性;金属助剂能提高催化剂活性,尤其是含5%Cu的Cu/H-MOR与Cu/ZnO串联催化剂显示了最佳的催化反应活性,于最佳反应温度493 K下以Ar/DME/CO/H_2(1.6/1.0/47.4/50.0)为原料进行反应,DME转化率达到33.6%,乙醇选择性达到了44.5%。  相似文献   

2.
《应用化工》2022,(7):1285-1289
通过水热合成法和共沉淀法分别制备了分子筛催化剂和Cu/ZnO催化剂,将分子筛与Cu/ZnO调控成双层串联催化剂,并用于二甲醚与合成气通过两段反应制备乙醇。研究了反应温度和反应气组成等因素对反应的影响,比较了分子筛类型、助剂种类和含量等对催化剂活性的影响。结果表明,随反应温度增加,DME转化率和乙醇选择性呈现先增加后减小趋势,随着DME含量减少和CO含量增加,DME转化率和乙醇选择性增加。H-MOR分子筛与Cu/ZnO串联催化剂显示了最佳的催化活性;金属助剂能提高催化剂活性,尤其是含5%Cu的Cu/H-MOR与Cu/ZnO串联催化剂显示了最佳的催化反应活性,于最佳反应温度493 K下以Ar/DME/CO/H_2(1.6/1.0/47.4/50.0)为原料进行反应,DME转化率达到33.6%,乙醇选择性达到了44.5%。  相似文献   

3.
以水热合成的H-MOR分子筛催化剂,通过对二甲醚羰基化反应失活后催化剂进行再生,考察了不同再生气体、再生温度、O_2体积分数、烧炭升温速率等条件,烧炭后催化剂上二甲醚羰基化活性性能。TPO表征结果表明:反应后H-MOR分子筛上有两种不同性质的积炭。积炭催化剂在3%(体积)O_2/N_2气氛中,从室温以2℃·min~(-1)升温至320℃恒温一段时间,然后以相同速率升温至550℃进行烧炭,再生催化剂活性几乎完全恢复。NH_3-TPD和BET表征结果表明,再生催化剂活性得以恢复是因为优化了烧炭方案,分子筛表面积炭能够被烧除干净同时分子筛孔道不被破坏。  相似文献   

4.
刘亚华  李扬  王科  叶秋云  刘芃 《化工学报》2017,68(10):3816-3822
以水热合成的H-MOR分子筛催化剂,通过对二甲醚羰基化反应失活后催化剂进行再生,考察了不同再生气体、再生温度、O2体积分数、烧炭升温速率等条件,烧炭后催化剂上二甲醚羰基化活性性能。TPO表征结果表明:反应后H-MOR分子筛上有两种不同性质的积炭。积炭催化剂在3%(体积) O2/N2气氛中,从室温以2℃·min-1升温至320℃恒温一段时间,然后以相同速率升温至550℃进行烧炭,再生催化剂活性几乎完全恢复。NH3-TPD和BET表征结果表明,再生催化剂活性得以恢复是因为优化了烧炭方案,分子筛表面积炭能够被烧除干净同时分子筛孔道不被破坏。  相似文献   

5.
采用水热法合成了H型丝光沸石(H-MOR-S),考察了其二甲醚(DME)羰基化合成乙酸甲酯(MA)的活性,并与购买的商业H型丝光沸石(H-MOR-C)的羰基化活性进行比较.结果表明,水热法合成的样品H-MOR-S在180 ℃具有较高的DME羰基化活性,DME转化率可达到53.0%;但购买的样品H-MOR-C的DME转化率仅为20.5%.通过XRD和BET表征发现:样品H-MOR-S具有更大的比表面积,尤其是微孔比表面积和体积较大,其平均孔径为0.430 nm,接近八元环通道的大小,表明该样品中有更多八元环尺寸的通道,从而具有更多的DME吸附活性位,有助于提高催化剂的DME羰基化性能;通过SEM表征发现:样品H-MOR-S呈椭球状颗粒分布,每个颗粒由光滑二维平面成层状沿分子筛c轴方向整齐有序堆叠起来,提高了分子扩散速度,因而表现出较高的DME羰基化活性.  相似文献   

6.
生物质气一步法合成二甲醚中试实验   总被引:1,自引:0,他引:1  
在列管式连续固定床中试系统上,采用自制二甲醚(DME)合成催化剂,以玉米芯经两段式固定床富氧气化合成气为气源,进行一步法合成DME实验研究.考察了催化剂反应温度(210-295℃)、空速(650-3 000 h-1)对合成过程的影响.并对合成DME催化剂反应前后进行XRD表征.实验结果表明:反应空速为1 200 h-1时,最佳反应温度为270℃时.此时CO转化率最高为73.55%;空速在650-3 000 h-1时,CO转化率为82.00%~67.74%,时空产率为124.28~281.24 kg/(m3·h).  相似文献   

7.
莫蛮  刘学民 《精细化工》2012,29(12):1199-1203
采用不同方法制备了〔n(Ni)∶n(Cu)∶n(Cr)=75∶23∶2〕/γ-Al2O3催化剂,研究了该催化剂在聚醚多元醇胺化反应中的催化性能,考察了催化剂载体、催化剂焙烧温度、还原温度对胺化转化率和选择性的影响,并通过TG、H2-TPR、BET、XRD、SEM等方法对催化剂进行了表征分析。结果表明,催化剂制备方法对反应转化率影响较大,转化率最大差值为32.1%;不同载体和还原温度对催化剂活性影响显著,随着前驱体还原温度逐渐升高,产物转化率明显提高。研究发现,采用真空等体积浸渍制备方法,选用γ-Al2O3-1号载体在焙烧温度350℃、还原温度600℃的条件下,产物胺值达305.4 mg KOH/g,转化率68.0%,选择性96.5%。  相似文献   

8.
铜络合催化剂氧化羰基合成碳酸二甲酯的研究   总被引:3,自引:0,他引:3  
针对甲醇液相氧化羰基化法合成碳酸二甲酯(DMC)工艺,开发了铜络合催化剂,研究了催化剂反应活性及其稳定性,考察了搅拌速度、温度、催化剂浓度、压力、时间等影响因素对反应的影响。实验结果表明,在搅拌速度大于750 r/min,100~110℃,催化剂浓度15 g/100 mL-MeOH和3.5 MPa的条件下反应6 h,甲醇转化率达24%,DMC选择性大于97%。催化剂可回收反复使用。  相似文献   

9.
甲醇气相羰基化合成醋酸催化剂的研制   总被引:4,自引:0,他引:4  
在常压气固床催化评价装置上,对Ni/AC催化剂制备中的浸渍、干燥、活化等步骤进行了详细考察,给出了较理想的制备条件、热处理温度(400℃)和还原温度(700℃)。与已有的报道相比,所研制的催化剂用于常压气相甲醇羰基化合成醋酸反应,甲醇转化率提高了7.24%,醋酸收率提高了4.67%。  相似文献   

10.
采用负载型Ru/Al_2O_3催化剂对双酚A(BPA)加氢制备氢化双酚A(HBPA)进行了研究,考察了催化剂煅烧温度、煅烧时间、还原温度、还原时间、催化剂负载量等制备条件对反应的影响,确定催化剂最佳制备条件为:煅烧温度200℃、煅烧时间5 h、还原温度100℃、还原时间1 h,Ru负载量(w)3%。同时考察了溶剂类型、催化剂用量、反应温度、反应压力等条件对催化加氢反应的影响,确定催化加氢反应的最佳工艺条件为:溶剂选用异丙醇、催化剂用量3%、反应温度160℃、反应压力4.5MPa、反应时间4 h。在上述最佳条件下,双酚A的转化率为100%,氢化双酚A的选择性为97.08%。  相似文献   

11.
氢型丝光沸石(H-MOR)分子筛是二甲醚(DME)羰基化制乙酸甲酯(MA)的一种高效催化剂,经研究吡啶的修饰可以有效提高其稳定性及催化寿命。为了从原子尺度上研究吡啶对其改性的本质机理,基于Monte Carlo及分子动力学模拟,分别对H-AlMOR及Py-H-AlMOR周期性模型内羰基化主反应物CO、DME及产物MA的吸附-扩散行为进行了对比研究。结果表明,吡啶的引入会使H-MOR分子筛模型内主反应物CO、DME的吸附量产生一定下降(24%~33%),但有助于改善二者分子筛内的吸附平衡,并提升活性孔道8-MR内的反应物浓度。同时,吡啶引入后将对各分子扩散产生较大影响(21%~58%),尤其产物MA扩散性能下降约58%。此外,吡啶的引入也会使达到高反应活性所需的高进料比PCO/PDME有所降低。  相似文献   

12.
石磊  姚杰  朱文良  刘中民 《化工学报》2017,68(10):3739-3746
甲氧基乙酸甲酯(MMAc)是重要的精细化学品,同时是拟开辟的由合成气间接法制乙二醇的中间产物。鉴于文献报道的甲缩醛(DMM)气相羰化制MMAc存在CO与DMM比例过高(>100),CO一次转化率过低(<0.5%)等缺点,采用釜式反应器,系统研究液相DMM羰基化反应过程中诸多因素,如溶剂种类、不同牌号磺酸树脂催化剂、反应温度、压力、反应时间、催化剂前处理等因素对DMM转化率以及产物MMAc选择性的影响。环丁砜显著提高了CO在液相中的溶解度,并有效抑制醛基游离以及DMM歧化反应,使DMM最大限度地向羰化反应方向进行。采用H-Y分子筛为催化剂,在反应温度120℃,初始反应压力3.0 MPa时,MMAc选择性仅为5%,而以磺酸树脂为催化剂时,MMAc选择性可以达到45%,说明磺酸树脂催化剂比H-Y分子筛具有更强的羰化能力。DMM在H-Y分子筛微孔表面更易发生歧化反应,导致二甲醚选择性大于90%。DMM转化率随反应温度、压力的增高和反应时间的增长而增大,MMAc选择性随反应时间增长和压力增高而提高、随着反应温度的升高先提高后降低。随着催化剂前处理温度升高,树脂催化剂中吸附的水含量逐渐减少,MMAc选择性逐步提高,但过高温度会导致催化剂孔道塌陷、表面结焦,羰化效果变差。以环丁砜为溶剂,D-009B树脂为催化剂,反应温度110℃、压力5 MPa、反应6 h,DMM转化率接近100%,MMAc选择性达到74.32%,显示较好的工业应用前景。  相似文献   

13.
将Ni负载在H-ZSM-5和H-MOR分子筛催化剂上,以异丙苯为模型化合物对分子筛催化剂加氢脱烷基性能进行评价。考察了分子筛复配比例、金属含量和酸浓度对催化剂活性的影响。结果表明,酸处理后的分子筛催化剂,异丙苯转化率和苯、甲苯、二甲苯(BTX)的收率有明显提高。当反应温度为340 ℃、压力0.8 MP和空速1 h-1时,其转化率为81.5%,BTX收率为72.8%,选择性可达89.2%。  相似文献   

14.
合成气经二甲醚(DME)羰基化合成乙酸甲酯(MA),MA进一步加氢制备乙醇是一种新型高效的煤基合成气制备乙醇路线。采用温和的后处理方法改性DME羰基化分子筛,进一步提高DME羰基化效率,对其工业应用具有重要意义。本研究利用四乙基氢氧化铵(TEAOH)对HMOR分子筛改性处理,探讨了有机碱改性处理对HMOR分子筛的结构和DME羰基化催化性能的影响。研究发现,TEAOH浓度为0.3 mol/L时,HMOR分子筛介孔孔容增大约26%,外比表面积增大约10%,DME的转化率增幅达68%。TEAOH水解产生的OH-能够温和脱除HMOR分子筛中的骨架硅,获得介-微多级孔结构,提高DME羰基化反应过程中的传质速率。此外,水解的TEA+在分子筛表面富集,抑制了OH-的过度脱硅,保护分子筛基本骨架结构不被更深层次破坏。  相似文献   

15.
以La改性氧化铝为催化剂,在模拟绝热固定床反应器中考察工艺条件对甲醇气相脱水制二甲醚反应的影响。结果表明,甲醇进料温度210℃时,甲醇脱水反应剧烈,绝热温升约130℃。催化剂床层热点温度低于380℃时,二甲醚选择性大于98%,过高温度产生大量副产物甲烷。反应压力对反应影响甚微。在甲醇进料温度240℃(热点温度370℃)、甲醇进料空速1.5 h-1和反应系统压力为50 k Pa条件下,甲醇转化率大于84%,二甲醚选择性大于98.5%,连续运转2 000 h,催化剂无明显失活迹象。  相似文献   

16.
为了降低催化剂床层压降,提高Fe-β分子筛催化剂用于N_2O催化分解的能力,通过研究整体式分子筛催化剂制备方法,优化出最优原料配比为ω(拟薄水铝石)=40%,ω(硝酸)=8%,水粉比为0.6 m L·g~(-1)。研究了成型过程对分子筛催化剂结构及性能的影响,并在不同孔密度分子筛催化剂、N_2O浓度和空速条件下考察N_2O分解反应性能。结果表明,在相同温度、空速和N_2O浓度下,分子筛催化剂的孔密度越高,催化活性呈增强趋势;对于相同孔密度的分子筛催化剂,随着空速的增加,相同温度下的N_2O转化率逐渐下降;对于相同孔密度的分子筛催化剂,在相同反应空速和温度下,随着N_2O浓度的增大,N_2O转化率呈上升趋势。  相似文献   

17.
采用NaY分子筛催化剂,经离子交换和高温焙烧制得HY分子筛,以油酸和乙醇为原料,在间歇反应釜进行酯化反应研究。考察反应温度、原料配比、催化剂用量和反应时间等条件对酯化反应的影响。结果表明,在反应温度180 ℃、n(油酸)∶n(乙醇)=1∶2.5、催化剂用量为原料总质量的1.0%和反应时间4 h条件下,油酸转化率可达81.18%。实验中的HY分子筛表现出较高的活性和良好的稳定性。  相似文献   

18.
对气相甲醇氧化羰基化合成碳酸二甲酯反应中的Cu(Ⅰ)分子筛催化剂进行了活性评价,考察了分子筛载体、催化剂制备温度和制备时间对反应活性的影响,并对反应条件进行了优化.结果表明,Y型分子筛为载体催化活件最好.Cu(Ⅰ)Y催化剂,其最佳制备温度为650℃,制备时间为4 h,反应温度为140℃.在O_2流量为1 mL/min时,随着CO/O_2摩尔比值的提高,CMeOH及STY均呈先上升后下降的趋势,而SDMC则呈上升趋势,最佳原料气摩尔比CO/O_2=10/1.  相似文献   

19.
研究了醌类化合物催化O2氧化醛合成羧酸的催化性能,发现蒽醌的催化活性高于2,3-二氯-5,6-二氰基-1,4-苯醌、四溴对苯醌、苯醌和萘醌,反应温度以及催化剂用量对反应有重要的影响,以5%物质的量(分数)的蒽醌为催化剂,在100℃、0.3MPa的O2条件下,反应5h,糠醛的转化率达到26.7%。以1.25%的蒽醌为催化...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号