首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Partial mitochondrial cytochrome b gene sequences reveal two deeply differentiated mtDNA lineages in anoa dwarf buffaloes (Bubalus depressicornis) from the studbook herd in European zoos. Three matrilinear lineages of lowland anoas (depressicornis type) contributed three rather similar sequence haplotypes, but one remarkably distinct haplotype was observed exclusively in mountain anoas (quarlesi type) descended from one founder female. The carriers of the distinctive mtDNA haplotype were also distinguished by several chromosomal and phenotypic peculiarities too. The differentiation between the mtDNA lineages of anoa approached or even surpassed the genetic divergence between some uncontested species of wild cattle. The depth of this haplotype divergence in anoas is discussed against the background of the phylogenetic age of these paleoendemic inhabitants of a predator-free island refugium, Sulawesi, who are among the most plesiomorphic living bovines. The studbook breeding of captive anoas as a safeguard against extinction might profit from such population genetic markers. These cytochrome b gene sequences were unable to resolve the phylogeny of nine bovine taxa robustly, except the divergence of Bubalus, Synceros, Bison, and Bos (sensu lato) genera.  相似文献   

2.
Distinct gender-associated mitochondrial DNA (mtDNA) lineages (i.e., lineages which are transmitted either through males or through females) have been demonstrated in two families of bivalves, the Mytilidae (marine mussels) and the Unionidae (freshwater mussels), which have been separated for more than 400 Myr. The mode of transmission of these M (for male-transmitted) and F (for female-transmitted) molecules has been referred to as doubly uniparental inheritance (DUI), in contrast to standard maternal inheritance (SMI), which is the norm in animals. A previous study suggested that at least three origins of DUI are required to explain the phylogenetic pattern of M and F lineages in freshwater and marine mussels. Here we present phylogenetic evidence based on partial sequences of the cytochrome c oxidase subunit I gene and the 16S RNA gene that indicates the DUI is a dynamic phenomenon. Specifically, we demonstrate that F lineages in three species of Mytilus mussels, M. edulis, M. trossulus, and M. californianus, have spawned separate lineages which are now associated only with males. This process is referred to as "masculinization" of F mtDNA. By extension, we propose that DUI may be a primitive bivalve character and that periodic masculinization events combined with extinction of previously existing M types effectively reset the time of divergence between conspecific gender-associated mtDNA lineages.  相似文献   

3.
Sea urchins of the genus Arbacia (order Stirodonta) have discontinuous allopatric distributions ranging over thousands of kilometers. Mitochondrial DNA (mtDNA) sequences were used to reconstruct phylogenetic relationships of four Arbacia species and their geographic populations. There is little evidence of genetic structuring of populations within species, except in two cases at range extremes. The mtDNA sequence differentiation between species suggests that divergence occurred about 4-9 MYA. Gene sequences encoding the sperm protein bindin and its intron were obtained and compared with the mtDNA phylogeny. Sea urchins among the well-studied echinoid order Camarodonta, with degrees of mtDNA divergence similar to those of Arbacia species, are known to have remarkable variation in bindin. However, in Arbacia, little variation in deduced amino acid sequences of bindin was found, indicating that purifying selection acts on the protein. In contrast, bindin intron sequences showed much differentiation, including numerous insertion/deletions. Fertilization experiments performed between a divergent pair of Arbacia species from the Atlantic and Pacific Oceans revealed no evidence of blocks to gamete recognition. In Arbacia, fertilization specificities may have evolved relatively slowly as a result of extensive gene flow within species, greater functional constraint on the bindin polypeptide, or reduced selective pressure for species recognition in singly occurring species.  相似文献   

4.
Partial sequences of the cytochrome b gene (402 bp) in mtDNA were determined for brackishwater gobiid fishes, genus Tridentiger, collected from geographically distant locations in the Japanese Archipelago, and their interspecific and geographic variations were analyzed and compared. Contrary to the results of a previous allozyme analysis which revealed the existence of considerable genetic divergence (Nei's genetic distance > 0.5) between T. obscurus and T. brevispinis, the mtDNA haplotypes (mitotypes) of these two species were very similar and could not be distinguished by any of the neighbor-joining, maximum-likelihood or parsimony analyses. Hybrid individuals between the two species were also found, with several mitotypes being shared by both species and their hybrids. The phylogenetic relationships of mitotypes were divided into three subgroups, the geographical distributions of the latter being allied to geographical features of the Archipelago. These results suggested the occurrence of multiregional introgression between the two species, with mitotypes transferring from one species to the other.  相似文献   

5.
A literature review is conducted on the phylogenetic discontinuities in mtDNA sequences of 252 taxonomic species of vertebrates. About 140 of these species (56%) were subdivided clearly into two or more highly distinctive matrilineal phylogroups, the vast majority of which were localized geographically. However, only a small number (two to six) of salient phylogeographic subdivisions (those that stand out against mean within-group divergences) characterized individual species. A previous literature summary showed that vertebrate sister species and other congeners also usually have pronounced phylogenetic distinctions in mtDNA sequence. These observations, taken together, suggest that current taxonomic species often agree reasonably well in number (certainly within an order-of-magnitude) and composition with biotic entities registered in mtDNA genealogies alone. In other words, mtDNA data and traditional taxonomic assignments tend to converge on what therefore may be "real" biotic units in nature. All branches in mtDNA phylogenies are nonanastomose, connected strictly via historical genealogy. Thus, patterns of historical phylogenetic connection may be at least as important as contemporary reproductive relationships per se in accounting for microevolutionary unities and discontinuities in sexually reproducing vertebrates. Findings are discussed in the context of the biological and phylogenetic species concepts.  相似文献   

6.
Phylogenetic relationships between species from the genera Kluyveromyces and Saccharomyces and representatives of the Metschnikowiaceae (Holleya, Metschnikowia, Nematospora) including the two filamentous phytopathogenic fungi Ashbya gossypii and Eremothecium ashbyii were studied by comparing the monosaccharide pattern of purified cell walls, the ubiquinone system, the presence of dityrosine in ascospore walls, and nucleotide sequences of ribosomal DNA (complete 18S rDNA, ITS1 and ITS2 region). Based on sequence information from both ITS regions, the genera Ashbya, Eremothecium, Holleya and Nematospora are closely related and may be placed in a single genus as suggested by Kurtzman (1995; J Industr. Microbiol. 14, 523-530). In a phylogenetic tree derived from the ITS1 and ITS2 region as well as in a tree derived from the complete 18S rDNA gene, the genus Metschnikowia remains distinct. The molecular evidence from ribosomal sequences suggests that morphology and ornamentation of ascospores as well as mycelium formation and fermentation should not be used as differentiating characters in family delimitation. Our data on cell wall sugars, ubiquinone side chains, dityrosine, and ribosomal DNA sequences support the inclusion of plant pathogenic, predominantly filamentous genera like Ashbya and Eremothecium or dimorphic genera like Holleya and Nematospora with needle-shaped ascospores within the family Saccharomycetaceae. After comparison of sequences from the complete genes of the 18S rDNA the genus Kluyveromyces appears heterogeneous. The type species of the genus, K. polysporus is congeneric with the genus Saccharomyces. The data of Cai et al. (1996; Int. J. Syst. Bacteriol. 46, 542-549) and our own data suggest to conserve the genus Kluyveromyces for a clade containing K. marxianius, K. dobzhanskii, K. wickerhamii and K. aestuarii, which again can be included in the family Saccharomycetaceae. The phylogenetic age of the Metschnikowiaceae and Saccharomycetaceae will be discussed in the light of coevolution.  相似文献   

7.
8.
Recent data suggesting complex I dysfunction in Parkinson's disease (PD) arises from mitochondrial DNA (mtDNA) mutation does not conclusively answer whether the responsible genetic lesion is inherited (primary) or somatic (secondary). To address this question, we identified a family in which multiple members over three generations are affected with PD through exclusively maternal lines. Cytoplasmic hybrids (cybrids) were created for 15 family members over two generations by transferring each individual's mtDNA to mtDNA-depleted human neuroblastoma cells. Eight of the 15 cybrid lines contained mtDNA obtained from maternally descended family members and seven contained mtDNA from paternally descended family members. After 6 weeks of culture, cybrid cell lines were assayed for complex I activity and oxidative stress, and mitochondrial morphology was analyzed by electron microscopy. Compared with the cybrid lines containing mtDNA from paternal descendants, cybrid lines containing mtDNA from maternal descendants had lower complex I activity, increased reactive oxygen species production, increased radical scavenging enzyme activities, and more abnormal mitochondrial morphologic features. These findings were present in cybrid lines containing mtDNA from maternal descendants with PD as well as in currently asymptomatic young maternal descendants, and support a precedent for inherited mtDNA mutation in some persons with PD.  相似文献   

9.
We constructed a molecular phylogeny for a clade of eye-ringed vireos (Vireo flavifrons and the V. solitarius complex) to examine existing hypotheses of speciation and ecological diversification. Complete sequences of the mtDNA cytochrome b gene were obtained from 47 individuals of this group plus four vireonid outgroups. Mean levels of sequence divergence in the clade varied from 0.29% to 5.7%. Differences were greatest between V. flavifrons and four taxa of 'V. solitarius'. The latter separated into three taxonomic, geographical and ecological groups: V. plumbeus plumbeus, V. cassinii cassinii, and V. solitarius solitarius plus V. solitarius alticola. These differed by an average of 2.6-3.2%. Populations within each group revealed low levels of sequence variation (x = 0.20%) and little geographical structuring. The mtDNA data generally corroborate results from allozymes. V. plumbeus shows a loss of yellow-green carotenoid pigmentation from the ancestral condition. The occupancy of relatively dry habitats by this species and V. cassinii represents a derived ecological shift from more-humid environments occupied by other species of vireonids. Ecological divergence in this clade occurred in allopatry and is associated with generic-level stability in morphometrics and foraging styles. Migratory behaviour and seasonal habitat shifts apparently evolved multiple times in vireos breeding in temperate environments. Present geographical and ecological distributions, and low levels of intrataxon genetic divergence, are hypothesized to be the result of postglacial regionalization of climate-plant associations and rapid northward expansion of breeding ranges.  相似文献   

10.
The mitochondrial DNA (mtDNA) in animals is generally a circular molecule of approximately 15 kb, but there are many exceptions such as linear molecules and larger ones. RFLP studies indicated that the mtDNA in the terrestrial isopod Armadillidium vulgare varied from 20 to 42 kb. This variation depended on the restriction enzyme used, and on the restriction profile generated by a given enzyme. The DNA fragments had characteristic electrophoretic behaviors. Digestions with two endonucleases always generated fewer fragments than expected; denaturation of restriction profiles reduced the size of two bands by half; densitometry indicated that a number of small fragments were present in stoichiometry, which has approximately twice the expected concentration. Finally, hybridization to a 550-bp 16S rDNA probe often revealed two copies of this gene. These results cannot be due to the genetic rearrangements generally invoked to explain large mtDNA. We propose that the large A. vulgare mtDNA is produced by the tripling of a 14-kb monomer with a singular rearrangement: one monomer is linear and the other two form a circular dimer. Densitometry suggested that these two molecular structures were present in different proportions within a single individual. The absence of mutations within the dimers also suggests that replication occurs during the monomer phase.  相似文献   

11.
The primary sequence of a 402-bp part of the cytochrome b gene was determined in nine species of wood and field mice of the genus Apodemus. The majority of mutations were synonymous. The total number of transitions exceeded than of transversions. Among all substitutions, C-T transitions prevailed (51%); the most common substitution type in genus-specific sites was C-A transversions (42%). In interpopulation analysis, only transitions were recorded. A phylogenetic tree, constructed with the use of the neighbor-joining method, showed that the genus Apodemus is divided into three highly divergent groups: south Asian (Apodemus argenteus, A. semotus), east Asian (A. speciosus, A. agrarius), and Eurocaucasian (A. sylvaticus, A. flavicollis, A. uralensis, A. ponticus, A. flavipectis). The mean genetic distances within each group were 12.6, 11.2, and 8.8%, respectively. The species of the first group are more remote genetically and ancestrally with regard to the other groups. The interspecies divergence estimated for A. speciosus ranged from 0.25 to 3.75%. Thus, the evolutionary age of the genus Apodemus is about 6 Myr, and time of divergence of A. speciosus populations is 0.1-1.5 Myr. The phylogeny inferred from the data on the sequence of the cytochrome b gene in Apodemus mtDNA is somewhat different from similar phylogenies based on other genetic data and from the zoological taxonomy of wood and field mice. However, the above classification of species is confirmed by features of their karyotypes and segmentation of satDNA, and by the RFLP of total nDNA and isozyme polymorphism. Our results are in good agreement with the new classification of wood and field mice recently proposed by Russian zoologists.  相似文献   

12.
In each of the mussel species Mytilus edulis and M. trossulus there exist two types of mtDNA, the F type transmitted through females and the M type transmitted through males. Because the two species produce fertile hybrids in nature, F and M types of one may introgress into the other. We present the results from a survey of a population in which extensive hybridization occurs between these two species. Among specimens classified as "pure" M. edulis or "pure" M. trossulus on the basis of allozyme analysis, we observed no animal that carried the F or the M mitotype of the other species. In most animals of mixed nuclear background, an individual's mtDNA came from the species that contributed the majority of the individual's nuclear genes. Most importantly, the two mtDNA types in post-F1 male hybrids were of the same species origin. We interpret this to mean that there are intrinsic barriers to the exchange of mtDNA between these two species. Because such barriers were not noted in other hybridizing species pairs (many being even less interfertile than M. edulis and M. trossulus), their presence in Mytilus could be another feature of the unusual mtDNA system in this genus.  相似文献   

13.
14.
To study the phylogenetic relationships between the species of the family Mustelidae, by using the improved polymerase chain reaction-product direct sequencing technique, nucleotide sequences (375 bases) of the mitochondrial cytochrome b gene were determined on ten species from five genera of the Mustelidae and three species of other carnivore families, all of which are distributed in or around Japan. The molecular phylogenetic tree indicated a clear separation of five genera: Mustela and Martes from the subfamily Mustelinae, Lutra and Enhydra from the subfamily Lutrinae, and Meles from the subfamily Melinae. This clustering agreed with the previously reported morphological and karyological taxonomy. Furthermore, the relationships between the intrageneric species were discussed in more detail. This is the first report on the molecular phylogeny throughout the Japanese species of the Mustelidae, inferred from the mitochondrial DNA sequences.  相似文献   

15.
Calmodulin is a ubiquitous transducer of calcium signals in eukaryotes. In diploid plant species, several isoforms of calmodulin have been described. Here, we report on the isolation and characterization of calmodulin cDNAs corresponding to 10 genes from hexaploid (bread) wheat (Triticum aestivum). These genes encode three distinct calmodulin isoforms; one isoform is novel in that it lacks a conserved calcium binding site. Based on their nucleotide sequences, the 10 cDNAs were classified into four subfamilies. Using subfamily-specific DNA probes, calmodulin genes were identified and the chromosomal location of each subfamily was determined by Southern analysis of selected aneuploid lines. The data suggest that hexaploid wheat possesses at least 13 calmodulin-related genes. Subfamilies 1 and 2 were both localized to the short arms of homoeologous-group 3 chromosomes; subfamily 2 is located on all three homoeologous short arms (3AS, 3BS and 3DS), whereas subfamily 1 is located only on 3AS and 3BS but not on 3DS. Further analysis revealed that Aegilops tauschii, the presumed diploid donor of the D-genome of hexaploid wheat, lacks a subfamily-1 calmodulin gene homologue, whereas diploid species related to the progenitors of the A and B genomes do contain such genes. Subfamily 3 was localized to the short arm of homoeologous chromosomes 2A, 2B and 2D, and subfamily 4 was mapped to the proximal regions of 4AS, 4BL and 4DL. These findings suggest that the calmodulin genes within each subfamily in hexaploid wheat represent homoeoallelic loci. Furthermore, they also suggest that calmodulin genes diversified into subfamilies before speciation of Triticum and Aegilops diploid species.  相似文献   

16.
Hypotheses of the historical biogeography of tamarins (genus Saguinus) based on variation in coat colors and body size are tested using phylogenetic relationships inferred from mitochondrial DNA (mtDNA) sequence data. Samples from all 12 species of Saguinus and several subspecies are included in the analysis. Approximately 1,200 bases of mtDNA sequence from the cytochrome b and D-loop regions are reported for the tamarins and several outgroup taxa. Parsimony analysis of the mtDNA sequence data reveals Saguinus to be a monophyletic taxon composed of two major clades: one, the Small-bodied clade, contains S. nigricollis, S. tripartitus, and S. fuscicollis, and the other, the Large-bodied clade, contains the other nine species. The phylogenetic relationships among tamarins inferred from the mtDNA sequence data reject previous hypotheses for the historical biogeography of tamarins and suggest different dispersal routes for this group of New World monkeys. The molecular data suggest that tamarins dispersed across South America in two major waves from an origin somewhere south of the Amazon. One wave moved in a westerly direction, whereas the other moved in a northeastern direction toward the Amazon delta and then west along the northern portion of the continent into northern Colombia and Panama.  相似文献   

17.
Based on sequence analyses of 17 complete centromeric DNA monomers from ten different deer species, a model is proposed for the genesis, evolution, and genomic organization of cervid satellite I DNA. All cervid satellite I DNA arose from the initial amplification of a 31-bp DNA sequence. These 31-bp subrepeats were organized in a hierarchical fashion as 0.8-kb monomers in plesiometacarpalia deer and 1-kb monomers in telemetacarpalia deer. The higher-order repeat nature of cervid centromeric satellite DNA monomers accounts for their high intragenomic and intraspecific sequence conservation. Such high intraspecific sequence conservation validates the use of a single cervid satellite I DNA monomer from each deer species for interspecific sequence comparisons to elucidate phylogenetic relationships. Also, a specific 0.18-kb tandem duplication was observed in all 1-kb monomers, implying that 1-kb cervid satellite I DNA monomers arose from an unequal crossover event between two similar 0.8-kb ancestral DNA sequences.  相似文献   

18.
North American freshwater unionacean bivalves are a diverse group of nearly 300 species. Unionaceans exhibit an array of conchological, anatomical, life history, and reproductive characteristics that have figured prominently in proposed classification schemes. Recently, two very different classifications of North American unionaceans have been proposed. Depending on the classification system utilized, a very different evolutionary trajectory of anatomical and reproductive features is obtained. The lack of a robust, well corroborated phylogeny of North American unionacean bivalves hinders the progress of evolutionary and ecological studies involving these species. Here we present a mitochondrial DNA (mtDNA) based phylogeny for North American unionacean mussels and compare it to previously proposed classifications. In addition, we present a 'total evidence' phylogeny which incorporates both the mtDNA sequence data and available morphological data. The molecular and total evidence phylogenies agree largely with the conclusions of a previous study based largely on immunoelectrophoretic data. North American unionaceans can be divided into two families: the Unionidae, which is comprised of most of the species and the Margaritiferidae. Within the Uniondae are two subfamilies, the Anodontinae and Ambleminae. The resultant phylogeny was used to examine the evolution of several key anatomical features including the number of gills (demibranchs) used by females to brood developing embryos, incubation length (bradytictic vs tachytictic), larval (glochidial) tooth structures, and shell texture. Both molecular and total evidence phylogenies indicate several of the aforementioned characters evolved independently or were subsequently lost or gained in several lineages.  相似文献   

19.
Finger millet (Eleusine corocana subsp. coracana), an important cereal in East Africa and India, is a tetraploid species with unknown genomic components. A recent cytogenetic study confirmed the direct origin of this millet from the tetraploid E. coracana subsp. africana but questioned Eleusine indica as a genomic donor. Chloroplast (ct) DNA sequence analysis using restriction fragment pattern was used to examine the phylogenetic relationships between E. coracana subsp. coracana (domesticated finger millet), E. coracana subspecies africana (wild finger millet), and E. indica. Eleusine tristachya was included since it is the only other annual diploid species in the genus with a basic chromosome number of x = 9 like finger millet. Eight of the ten restriction endonucleases used had 16 to over 30 restriction sites per genome and were informative. E. coracana subsp. coracana and subsp. africana and E. indica were identical in all the restriction sites surveyed, while the ct genome of E, tristachya differed consistently by at least one mutational event for each restriction enzyme surveyed. This random survey of the ct genomes of these species points out E. indica as one of the genome donors (maternal genome donor) of domesticated finger millet contrary to a previous cytogenetic study. The data also substantiate E. coracana subsp. africana as the progenitor of domesticated finger millet. The disparity between the cytogenetic and the molecular approaches is discussed in light of the problems associated with chromosome pairing and polyploidy.  相似文献   

20.
A restriction-enzyme-site map is presented for the 147-kb mtDNA of North American Armillaria ostoyae. The locations of five structural genes, atp6, atp8, coxI, coxIII, and cob, along with the location and orientation of the large and small ribosomal RNA genes, were determined through Southern hybridizations with cloned genes from other fungal mtDNAs. Based on this map, the variation in mtDNA suggested geographic structure at two different levels. On a large geographic scale, 17 mtDNA types from North America were distinct, with respect to both size and restriction maps, from three mtDNA types from Europe. At the local scale, identical mtDNA types were evident among several different genetic individuals located no more than 1 km apart at a site in Michigan. No mtDNA type occurred more than once among genetic individuals from different regions of North America, although the occurrence of similar mtDNAs in isolates from distant regions suggested that this may occur at a low frequency with large sample sizes. Among the North American mtDNA types, analysis of discrete length variants was inconsistent with the hypothesis that the mtDNA of A. ostoyae evolves as a clonal lineage in which each length mutation represents a unique event. The two remaining hypotheses, that similar mutational events have occurred independently and that genetic exchange and recombination occurs among mtDNAs in natural populations of this species, remain to be tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号