首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three-dimensional (3D) KD-1 silicon carbide fiber reinforced silicon carbide matrix (KD-1 SiCf/SiC) composites were fabricated by a combining chemical vapor infiltration (CVI) and vapor silicon infiltration (VSI) process. The microstructure and mechanical properties of the resulting KD-1 SiCf/SiC composites were studied. The results show that the resulting SiCf/SiC composites have high bulk density and low open porosity (<6%). The mechanical properties of the resulting SiCf/SiC composites firstly increase and then decrease with decreasing the open porosity of the SiCf/C composites. The KD-1 SiC fibers were not severely deformed and adhered to the matrix with a weak interface during the VSI process. As a result, the composites exhibit non-catastrophic failure behavior. Additionally, the diffusion mechanism for the VSI process was also investigated in our work.  相似文献   

2.
SiC fiber-reinforced SiC–matrix ceramic composites (SiCf/SiC) were fabricated by vacuum infiltration of a SiC slurry into Tyranno™-SA grade-3 fabrics coated with a 200 nm-thick pyrolytic carbon (PyC) layer followed by hot pressing using a transient eutectic-phase. The density of the composite was improved using a special infiltration apparatus with a pressure gradient and alternating tape insertion between fabrics. Their overall properties were compared with those of monolithic SiC and composite containing chopped fibers. Although the density of the composites decreased with increasing fiber fraction, SiCf/SiC containing 50 vol.% fibers had a density of 3.13 g/cm3, which is the highest reported thus far. The composites containing continuous fibers had a maximum flexural strength of 607 MPa and a step increase in the stress–displacement behavior during the three-point bending test due to fiber reinforcement, which was not observed in the monolith.  相似文献   

3.
Abstract

Two-dimensional SiC fibre reinforced SiC ceramic matrix composites (SiCf/SiC) were fabricated by vacuum infiltration and hot pressing using a 200 nm thick pyrolytic carbon coated Tyranno SA3 fabric and 50 nm sized β-SiC powder. Hot pressing was carried out at 1750°C for 3 h in an Ar atmosphere under a pressure of 20 MPa. Al2O3–Y2O3–MgO sintering additive (10 wt-%) and polyvinyl butyral resin (45 wt-%) with respect to the matrix SiC were found to be the optimum contents for the high density composite. Vacuum infiltration with a force gradient produced much higher amount of slurry infiltration than simple dipping. Much improved density of 3·02 g cm?3, compared to the previous reports, was achieved for the SiC–SiCf containing approximately 67 vol.-% of fibre. This composite showed a step increase with a stress–displacement behaviour during the three-point bending test due to the fibre reinforcement. The displacement for failure and flexural strength were 0·58 mm and 342 MPa respectively, which were much larger than those for monolithic SiC.  相似文献   

4.
利用三维编织炭纤维预制件通过先驱体浸渍裂解法制备C/SiC复合材料。研究了热解碳(PyC)/SiC界面相对复合材料的微观结构和力学性能的影响。弯曲性能通过三点弯曲法测试,复合材料的断口和抛光面通过扫描电镜观察。结果表明:通过等温化学气相沉积法在纤维表面沉积PyC/SiC界面相以后,复合材料的三点抗弯强度从46MPa提高到247MPa。沉积界面的复合材料断口有明显的纤维拔出现象,纤维与基体之间的结合强度适当,起到了增韧作用;而未沉积界面相复合材料的断口光滑、平整,几乎没有纤维拔出,纤维在热解过程中受到严重的化学损伤,性能下降严重,材料表现为典型的脆性断裂。  相似文献   

5.
The French company Snecma Moteurs is a leading producer of high‐performance composites for operation under high mechanical stress and at high temperature, such as in jet engines, aircraft brake disks, or even rocket propulsion systems. The author presents the different families and generations of carbon‐carbon and ceramic‐matrix composites developed by Snecma, and discusses their manufacture and characteristics.  相似文献   

6.
催化化学气相渗透法制备C/C复合材料   总被引:2,自引:3,他引:2  
为了提高基体炭的沉积效率和抗氧化性能,采用常规化学气相渗透法催化制备C/C复合材料。研究了Ni/ZSM-5负载型催化剂对热解炭的致密化速率和性能的影响,并借助偏光显微镜(PLM)、扫描电子显微镜(SEM)和X射线衍射法(XRD)表征了热解炭微观结构。结果表明:在添加Ni/ZSM-5的炭布预制体中,热解炭有较快的沉积速率,其微观结构和抗氧化性能均与催化剂有关。  相似文献   

7.
三维针刺C/SiC摩擦材料的拉伸性能   总被引:1,自引:0,他引:1  
通过化学气相渗透法(CVI)结合反应熔体浸渗法(RMI)制备了低成本、高性能的三维针刺C/SiC摩擦材料,并对材料的组织结构、拉伸行为以及拉伸后的微结构进行了分析和研究。结果表明,材料由C、Si以及SiC等三种物相组成,密度约为2.1g/cm3,开气孔率约为4.4%;材料的拉伸强度约为114MPa~154MPa,弹性模量约为40GPa~63GPa;具有类似于金属的“塑性”,其增韧机理主要有纤维拔出、界面脱粘、裂纹偏转、纤维桥联以及裂纹分叉等。  相似文献   

8.
为提高对SiC_f/SiC复合材料在服役中失效机制的理解以及更合理地设计该类材料,通过声发射探测结合两种力学加载实验对该材料的损伤过程进行了评估与分析,并利用光学显微镜和扫描电子显微镜等手段对其损伤状态的演变进行了详细的表征和总结。实验结果表明,声发射技术可有效评估SiC_f/SiC复合材料的损伤程度,并用以分析特定加载应力水平下的损伤发展。研究表明:裂纹在较低的加载应力下(80 MPa)易在材料的原生缺陷附近或多种组分的边界处萌生,但对材料自身强度影响较小;较高的加载应力(≥100 MPa)则会使材料产生大尺度开裂,并与纤维发生相互作用进而降低材料的稳定性。SiC_f/SiC复合材料在递增的加载应力下会产生5种开裂形式以及纤维的断裂拔出和界面的脱粘等损伤行为。  相似文献   

9.
Carbon nanotube (CNT) reinforced SiCf/SiC composite was prepared by in situ chemical vapor deposition (CVD) growth of CNTs on SiC fibers then following polymer impregnation pyrolysis (PIP) process. The nature of CNTs and the microstructure of the as prepared CNT-SiCf/SiC composite were investigated. The mechanical properties of the as prepared CNT-SiCf/SiC composite were measured. The results reveal that the in situ CVD growth of CNTs on SiC fibers remarkably promotes the mechanical properties of SiCf/SiC composite. The secondly pull-out of CNTs from matrix during the pull-out of the SiC fibers from matrix consumes the deformation energies, resulting in promotion of the mechanical properties for composite.  相似文献   

10.
Interfacial control of uni-directional SiCf/SiC composites were performed by EPD, and their mechanical properties at room temperature were evaluated. The effect of the thickness of carbon interphase on SiC fibers by EPD on mechanical properties of uni-directional SiCf/SiC composites was also investigated. The average thickness of carbon coating on SiC fibers increased from 42 nm to 164 nm with an increase in the concentration of colloidal graphite suspension for EPD. Dense SiCf/SiC composites were achieved and their fiber volume fraction was 47–51%. The SiCf/SiC composites had a bending strength of 210–240 MPa. As the thickness of carbon coating was below 100 nm, the SiCf/SiC composites (SC01 and SC02) fractured in almost brittle manner. In contrast, the SiCf/SiC composites (SC03) showed a pseudo-ductile fracture behavior with a large number of fiber pullout as the thickness of carbon coating was above 100 nm. The fracture energy of SC03 was 3–4 times as high as those of SC01 and SC02 and the value was about 1.7 kJ/m2. In consideration of the results of mechanical properties, the thickness of carbon coating on SiC fibers should be at least 100 nm to obtain high-performance SiCf/SiC composites. The fabrication process based on EPD method is expected to be an effective way to control the interfaces of SiCf/SiC composites and to obtain high-performance SiCf/SiC composites.  相似文献   

11.
脉冲FCVI制备炭/炭复合材料的微观结构及力学性能   总被引:3,自引:2,他引:3  
采用脉冲强制流动热梯度化学气相渗透(IFCVI)法制备了毡基炭/炭复合材料。借助偏光显微镜及扫描电子显微镜观察了基体热解炭的微观组织结构及断口形貌特征;用弯曲实验测定了材料的力学性能。结果表明:采用脉冲FCVI,经1000℃~1250℃,100h致密化,2300℃热处理后,炭/炭复合材料的密度可达1.7g/cm^3,弯曲强度为125.4MPa,挠度为0.61mm。该工艺致密化速率快,所制备材料的密度分布均匀、力学性能好。研究表明,温度是影响材料组织结构的主要因素,高温条件下有利于粗糙层热解炭组织的生成,而低温有利于光滑层热解炭组织的生成,一般因沉积环境复杂多变,常得到混合型组织。  相似文献   

12.
采用浆料浸渗结合液硅渗透法原位生成高韧性Ti3SiC2基体,制备Ti3SiC2改性C/C—SiC复合材料。研究了TiC颗粒的引入对熔融Si浸渗效果的影响,分析了Ti3SiC2改性C/C-SiC复合材料的微结构和力学性能。实验结果表明:TiC与熔融si反应生成Ti3SiC2是可行的,而且c的存在更有利于生成Ti3SiC2;在含TiC颗粒的C/C预制体孔隙(平均孔径22.3μm)内,熔融si的渗透深度1min内可达10.8cm;Ti3SiC2取代残余Si后提高了C/C-SiC复合材料的力学性能,C/C-SiC-Ti3SiC2复合材料的弯曲强度达203MPa,断裂韧性达到8.8MPa·m^[1/2];对于厚度为20rllm的试样,不同渗透深度处材料均具有相近的相成分、密度和力学性能,无明显微结构梯度存在,表明所采用的浆料浸渗结合液硅渗透工艺适用于制备厚壁Ti3SiC2改性C/C-SiC复合材料构件。  相似文献   

13.
In this paper, dense short carbon fiber reinforced silicon carbide matrix composites had been fabricated by hot-pressed (HP) sintering using Al2O3 and La2O3 as sintering additives. The results showed that the combination of Al2O3 and La2O3 system was effective to promote densification of short cut carbon fiber reinforced silicon carbide composites (Cf/SiC). The whisker structure of silicon carbide was formed during the annealed treatment at 2023 K for 1 h. However, it was noted that this structure was not observed in the as-received HP material. The mechanism of forming whisker structure was not clear, but this kind of whisker structure was helpful to improve mechanical properties. The combination of grain bridging, crack deflection and whisker debonding would improve the fracture toughness of the Cf/SiC composites.  相似文献   

14.
以天然鳞片石墨为起始原料,SiC颗粒为增强相,采用热压烧结工艺制备了SiC增强石墨复合材料。研究了SiC含量对SiC增强石墨复合材料微观结构、力学性能和摩擦性能的影响。结果表明:SiC颗粒均匀分布在石墨基体中,降低了基体中的孔隙率;随着SiC含量增加,SiC增强石墨复合材料的相对密度和弯曲强度相应增加,开孔率显著降低,当SiC含量达到40vol%时,SiC增强石墨复合材料中形成了SiC网络骨架结构,相对密度达到了94.2%,比商品高强纯石墨材料提高了11.8%,弯曲强度达到了146 MPa,比商品高强纯石墨材料提高了147%;基体石墨保持了层状结构;SiC含量低于40vol%时,SiC增强石墨复合材料的摩擦系数随SiC含量的增加轻微增加,与纯石墨材料的摩擦系数相当,具有良好的摩擦性能。  相似文献   

15.
Multi-walled carbon nanotube (MWNT)-reinforced carbon fiber/silicon carbide (Cf/SiC) composites were prepared using a polymer infiltration and pyrolysis (PIP) process. The MWNTs used in this study were modified using a chemical treatment. The MWNTs were found to be well dispersed in the matrix after ultrasonic dispersion, and the mechanical properties of the Cf/SiC composite were significantly improved by the addition of MWNTs. The addition of 1.5 wt.% of MWNTs to the Cf/SiC composite led to a 29.7% increase in the flexural strength, and a 27.9% increase in the fracture toughness.  相似文献   

16.
界面改性涂层对调节复合材料的力学性能起到重要作用。特别是在气相渗硅(GSI)制备C_f/SiC复合材料时,合适的界面改性涂层一方面保护C纤维不受Si反应侵蚀,另一方面调节C纤维和SiC基体的界面结合状况。通过在3D-C纤维预制件中制备先驱体浸渍-裂解(PIP)SiC涂层来进行界面改性,研究了PIP-SiC涂层对GSI C_f/SiC复合材料力学性能的影响。结果表明:无涂层改性的GSI C_f/SiC复合材料力学性能较差,呈现脆性断裂特征,其弯曲强度、弯曲模量和断裂韧性分别为87.6 MPa、56.9GPa和2.1 MPa·m~(1/2)。具有PIP-SiC界面改性涂层的C_f/SiC复合材料力学性能得到改善,PIP-SiC涂层改性后,GSI C_f/SiC复合材料的弯曲强度、弯曲模量和断裂韧性随着PIP-SiC周期数的增加而降低,PIP-SiC为1个周期制备的GSI C_f/SiC复合材料的力学性能最高,其弯曲强度、弯曲模量、断裂韧性分别为185.2 MPa、91.1GPa和5.5 MPa·m~(1/2)。PIP-SiC界面改性涂层的作用机制主要体现在载荷传递和"阻挡"Si的侵蚀2个方面。  相似文献   

17.
采用浆料浸渗结合液硅渗透法原位生成高韧性Ti3SiC2基体, 制备Ti3SiC2改性C/C-SiC复合材料。研究了TiC颗粒的引入对熔融Si浸渗效果的影响, 分析了Ti3SiC2改性C/C-SiC复合材料的微结构和力学性能。实验结果表明: TiC与熔融Si反应生成Ti3SiC2是可行的, 而且C的存在更有利于生成Ti3SiC2; 在含TiC颗粒的C/C预制体孔隙(平均孔径22.3 μm)内, 熔融Si的渗透深度1 min内可达10.8 cm; Ti3SiC2取代残余Si后提高了 C/C-SiC复合材料的力学性能, C/C-SiC-Ti3SiC2复合材料的弯曲强度达203 MPa, 断裂韧性达到8.8 MPa·m1/2; 对于厚度为20 mm的试样, 不同渗透深度处材料均具有相近的相成分、 密度和力学性能, 无明显微结构梯度存在, 表明所采用的浆料浸渗结合液硅渗透工艺适用于制备厚壁Ti3SiC2改性C/C-SiC复合材料构件。   相似文献   

18.
A chemical vapor-infiltrated (CVI) SiC layer is often deposited on the pyrocarbon (PyC) fiber–matrix interface layer in SiC fiber-reinforced SiC matrix (SiC/SiC) composites. It is normally applied to protect the PyC layer from reacting with molten Si or sintering aids during manufacturing, and to guard against the effects of high temperature, oxidation and moisture during use. In this study, we investigated the effect of this SiC layer on the tensile properties of a composite. Tensile tests of our composite samples showed the SiC layer to have no noticeable effects on its ultimate load or fracture strain, whereas it decreased the load-to-strain ratio and proportional limit. The test results were analyzed by carrying out element tests on filaments and fiber bundle samples, fracture mirror analysis of pullout fibers, and finite element analysis (FEA) of residual thermal stress around the interface.  相似文献   

19.
Porous silicon nitride/silicon oxynitride composite ceramics were fabricated by silica sol infiltration of aqueous gelcasting prefabricated Si3N4 green compact. Silica was introduced by infiltration to increase the green density of specimens, so suitable properties with low shrinkage of ceramics were achieved during sintering at low temperature. Si2N2O was formed through reaction between Si3N4 and silica sol at a temperature above 1550 °C. Si3N4/Si2N2O composite ceramics with a low linear shrinkage of 1.3–5.7%, a superior strength of 95–180 MPa and a moderate dielectric constant of 4.0–5.0 (at 21–39 GHz) were obtained by varying infiltration cycle and sintering temperature.  相似文献   

20.
液硅渗透法制备SiBC改性C/CSiC复合材料   总被引:1,自引:0,他引:1  
为了降低液硅渗透法制备C/C-SiC复合材料中残留Si的含量, 采用浆料浸渗结合液硅渗透工艺制备B12(C, Si, B)3改性C/C-SiC复合材料。通过分析不同比例B4C-Si体系在不同温度的反应产物, 确定了B12(C, Si, B)3的生成条件。结果表明: B4C和Si在1300℃开始反应, 生成少量B12(C, Si, B)3和SiC, 且B12(C, Si, B)3的生成量随反应温度的升高而增加; 当B4C和Si的摩尔比为3:1、 反应温度为1500℃ 时, 产物为B12(C, Si, B)3和SiC; 液硅渗透法制备的C/C-SiC复合材料相组成为非晶态C、 β-SiC和B12(C, Si, B)3, 未见残留Si。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号