首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transparent thin films of Ga-doped ZnO (GZO), with Ga dopant levels that varied from 0 to 7 at.%, were deposited onto alkali-free glass substrates by a sol-gel process. Each spin-coated film was preheated at 300 °C for 10 min, and then annealed at 500 °C for 1 h under air ambiance. The effects of Ga dopant concentrations on crystallinity levels, microstructures, optical properties, and electrical resistivities of these ZnO thin films were systematically investigated. Photoluminescence spectra of GZO thin films were examined at room temperature. XRD results revealed that the undoped ZnO thin films exhibited a preferred orientation along the (002) plane and that the ZnO thin films doped with Ga showed degraded crystallinity. Experimental results also showed that Ga doping of ZnO thin films could markedly decrease surface roughness, improve transparency in the visible range, and produce finer microstructures than those of undoped ZnO thin films. The most promising films for transparent thin film transistor (TTFT) application produced in this study, were the 3 and 5 at.% Ga-doped ZnO thin films, both of which exhibited an average transmittance of 90.6% and an RMS roughness value of about 2.0 nm.  相似文献   

2.
Single crystalline ZnO thin film on p-GaN/sapphire (0 0 0 1) substrate, using two different precursors by hydrothermal route at a temperature of 90 °C were successfully grown. The effect of starting precursor on crystalline nature, surface morphology and optical emission of the films were studied. ZnO thin films were grown in aqueous solution of zinc acetate and zinc nitrate. X-ray diffraction analysis revealed that all the thin films were single crystalline in nature and exhibited wurtzite symmetry and c-axis orientation. The thin films obtained with zinc nitrate had a more pitted rough surface morphology compared to the film grown in zinc acetate. However the thickness of the films remained unaffected by the nature of the starting precursor. Sharp luminescence peaks were observed from the thin films almost at identical energies but deep level emission was slightly prominent for the thin film grown in zinc nitrate.  相似文献   

3.
B.L. Zhu  X.Z. Zhao  G.H. Li  J. Wu 《Vacuum》2010,84(11):1280-870
ZnO thin films were deposited on glass substrates at room temperature (RT) ∼500 °C by pulsed laser deposition (PLD) technique and then were annealed at 150-450 °C in air. The effects of annealing temperature on the microstructure and optical properties of the thin films deposited at each substrate temperature were investigated by XRD, SEM, transmittance spectra, and photoluminescence (PL). The results showed that the c-axis orientation of ZnO thin films was not destroyed by annealing treatments; the grain size increased and stress relaxed for the films deposited at 200-500 °C, and thin films densified for the films deposited at RT with increasing annealing temperature. The transmittance spectra indicated that Eg of thin films showed a decreased trend with annealing temperature. From the PL measurements, there was a general trend, that is UV emission enhanced with lower annealing temperature and disappeared at higher annealing temperature for the films deposited at 200-500 °C; no UV emission was observed for the films deposited at RT regardless of annealing treatment. Improvement of grain size and stoichiometric ratio with annealing temperature can be attributed to the enhancement of UV emission, but the adsorbed oxygen species on the surface and grain boundary of films are thought to contribute the annihilation of UV emission. It seems that annealing at lower temperature in air is an effective method to improve the UV emission for thin films deposited on glass substrate at substrate temperature above RT.  相似文献   

4.
Transparent semiconductor thin films of Zn1 − xTixO (0 ≦ x ≦ 0.12) were deposited on alkali-free glass substrates by the sol-gel method. The effects of Ti addition on the crystallization, microstructure, optical properties and resistivity of ZnO thin films were investigated. The as-coated films were preheated at 300 °C, and then annealed at 500 °C in air ambiance. X-ray diffraction results showed all polycrystalline Zn1  xTixO thin films with preferred orientation along the (002) plane. Ti incorporated within the ZnO thin films not only decreased surface roughness but also increased optical transmittance and electrical resistivity. In the present study, the Zn0.88Ti0.12O film exhibited the best properties, namely an average transmittance of 91.0% (an increase of ~ 12% over the pure ZnO film) and an RMS roughness value of 1.04 nm.  相似文献   

5.
ZnO thin films were prepared on Si (1 1 1) substrates at various temperatures from 250 to 700 °C using pulsed laser deposition (PLD) technique in order to investigate the structural and optical properties of the films. The structural and morphological properties of the films were investigated by XRD and SEM measurements, respectively. The quality of the films was improved with the increase of the temperature. By XRD patterns, the FWHMs of the (0 0 2) peaks of the ZnO films became narrower when the temperatures were above 500 °C. The FWHMs of the peaks of (0 0 2) of the films were as narrow as about 0.19° when films were grown at 650 and 700 °C. This indicates the superior crystallinity of the films. The optical properties of the films were studied by photoluminescence spectra using a 325 nm He-Cd laser. The two strongest UV peaks were found at 377.9 nm from ZnO films grown at 650 and 700 °C. This result is consistent with that of the XRD investigation. Broad bands in visible region from 450 to 550 nm were also observed. Our works suggest that UV emissions have close relations with not only the crystallinity but also the stoichiometry of the ZnO films.  相似文献   

6.
Fabrication of highly oriented (002) ZnO film on glass by sol-gel method   总被引:1,自引:0,他引:1  
In this study high quality (002) ZnO films were deposited on glass substrate by a sol-gel spin coating process. The as-coated films were post-annealed at different temperatures in air to investigate the effect of annealing temperature in particular. The chemical composition of the precursor sol and the intermediates produced in the films heating process were analyzed by thermo gravimetric analysis/differential thermal analysis (TGA/DTA). The microstructure and its optical properties of ZnO films were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), ultraviolet-visible spectroscopy (UV-Vis) and photoluminescence. TGA/DTA showed that a significant weight loss occurred at around 200-300 °C and the weight stabilized at 300 °C. An extremely sharp (002) diffracted peak in XRD patterns indicated the high preference in crystallinity of these films. FESEM micrographs revealed that the films were filled with particulates with size ranging from 10 to 25 nm as post annealing temperature increased from 400 to 500 °C and turned into porous films at 600 °C. UV-Vis has shown that the films were highly transparent under visible light and had a sharp absorption edge in the ultraviolet region at 380 nm. The measured optical band gap values of the ZnO thin films were around 3.24-3.26 eV. Photoluminescence spectra revealed a strong UV emission centered at about 390 nm corresponding to the near-band-edge emission with a weak defect-related emission at about 520 nm. The intensity of UV emission increased with the annealing temperature. This may be attributed to a higher quality ZnO film while annealed at higher temperature.  相似文献   

7.
Zinc oxide (ZnO) thin films have been grown on Si (100) substrates using a femto-second pulsed laser deposition (fsPLD) technique. The effects of substrate temperature and laser energy on the structural, surface morphological and optical properties of the films are discussed. The X-ray diffraction results show that the films are highly c-axis oriented when grown at 80 °C and (103)-oriented at 500 °C. In the laser energy range of 1.0 mJ-2.0 mJ, the c-axis orientation increases and the mean grain size decreases for the films deposited at 80 °C. The field emission scanning electron microscopy indicates that the films have a typical hexagonal structure. The optical transmissivity results show that the transmittance increases with the increasing substrate temperature. In addition, the photoluminescence spectra excited with 325 nm light at room temperature are studied. The structural properties of ZnO films grown using nanosecond (KrF) laser are also discussed.  相似文献   

8.
Zinc oxide (ZnO) films have been prepared by thermal oxidation of vacuum deposited zinc (Zn) films onto glass substrate kept at room temperature (35 °C). The structural, electrical, optical and gas sensing properties of films annealed at 350 and 500 °C have been investigated. X-ray diffraction measurements indicate that the ZnO films oxidized at these temperatures are polycrystalline in nature with (101) as preferential crystallographic orientation. Practically no change in lattice parameters of ZnO films is observed when oxidation temperature is increased from 350 to 500 °C. Field emission scanning electron microscopy shows nanoparticles and nanowires at the surface of the ZnO films oxidized at 350 and 500 °C, respectively. At room temperature (35 °C), the film oxidized at 350 °C shows a gradual increase of response up to 96% for 2000 ppm exposure of ethanol, while film oxidized at 500 °C could detect a response of 99% for 500 ppm beyond which it saturates. An increase in the optical absorbance of the film has also been observed when ethanol concentration increases from 50 to 200 ppm beyond which no significant change is noticed even up to 2000 ppm.  相似文献   

9.
B.L. Zhu  X.H. Sun  F.H. Su  X.G. Wu  R. Wu 《Vacuum》2008,82(5):495-500
ZnO thin films were prepared by pulsed laser deposition (PLD) on glass substrates with growth temperature from room temperature (RT) to 500 °C. The effects of substrate temperature on the structural and optical properties of ZnO films have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission spectra, and RT photoluminescence (PL) measurements. The results showed that crystalline and (0 0 2)-oriented ZnO films were obtained at all substrate temperatures. As the substrate temperature increased from RT to 500 °C, the ratio of grain size in height direction to that in the lateral direction gradually decreased. The same grain size in two directions was obtained at 200 °C, and the size was smallest in all samples, which may result in maximum Eg and E0 of the films. UV emission was observed only in the films grown at 200 °C, which is probably because the stoichiometry of ZnO films was improved at a suitable substrate temperature. It was suggested that the UV emission might be related to the stoichiometry in the ZnO film rather than the grain size of the thin film.  相似文献   

10.
In this study, transparent conducting Al-doped zinc oxide (AZO) films with a thickness of 150 nm were prepared on Corning glass substrates by the RF magnetron sputtering with using a ZnO:Al (Al2O3: 2 wt.%) target at room temperature. This study investigated the effects of the post-annealing temperature and the annealing ambient on the structural, electrical and optical properties of the AZO films. The films were annealed at temperatures ranging from 300 to 500 °C in steps of 100 °C by using rapid thermal annealing equipment in oxygen. The thicknesses of the films were observed by field emission scanning electron microscopy (FE-SEM); their grain size was calculated from the X-ray diffraction (XRD) spectra using the Scherrer equation. XRD measurements showed the AZO films to be crystallized with strong (002) orientation as substrate temperature increases over 300 °C. Their electrical properties were investigated by using the Hall measurement and their transmittance was measured by UV-vis spectrometry. The AZO film annealed at the 500 °C in oxygen showed an electrical resistivity of 2.24 × 10− 3 Ω cm and a very high transmittance of 93.5% which were decreased about one order and increased about 9.4%, respectively, compared with as-deposited AZO film.  相似文献   

11.
ZnO films highly orientated along the (0 0 2) plane were obtained by preheating the films at different temperatures for 10 min after each coating and postheating at 600 °C for 1 h. The pre-heat treatment conditions were found to strongly affect the crystallographic orientation, morphology and the optical properties of the resultant ZnO films. The more the films were oriented preferentially along (0 0 2) direction, the greater became their optical properties. By applying the preheating temperature of 300 °C, the grain size of films was increased and the average optical transmittance became about 80% in the visible range. The films showed smooth surface with a fine microstructure without cracks and voids.  相似文献   

12.
ZnO films have been prepared by spray pyrolysis technique on glass substrate at 500 °C. Zinc Chloride has been used as a precursor. Effect of precursor concentration on structural and optical properties has been investigated. Homogenous films are obtained with precursor concentration rating between 0.1 M and 0.4 M. X-ray diffraction patterns show that ZnO films are polycrystalline with (002) plane as preferential orientation. Field emission scanning electron microscopy images show that ZnO films consist of microrods that their length increases with increasing precursor concentration and tallest microrods obtain by spraying precursor with 0.3 M concentration. The optical transmittance spectrum shows that transmittance increases with decreasing of the concentration and transmittance reaches to a maximum value of about 80% for the visible region ZnO films prepared with 0.1 M. Photoluminescence spectra at room temperature show an ultraviolet emission at 3.21 eV that can be related to band gap and two visible emissions at 2.88 eV and 2.38 eV.  相似文献   

13.
Zinc oxide (ZnO) thin films were deposited on soda lime glass substrates by pulsed laser deposition (PLD) in an oxygen-reactive atmosphere. The structural, optical, and electrical properties of the as-prepared thin films were studied in dependence of substrate temperature and oxygen pressure. High quality polycrystalline ZnO films with hexagonal wurtzite structure were deposited at substrate temperatures of 100 and 300 °C. The RMS roughness of the deposited oxide films was found to be in the range 2-9 nm and was only slightly dependent on substrate temperature and oxygen pressure. Electrical measurements indicated a decrease of film resistivity with the increase of substrate temperature and the decrease of oxygen pressure. The ZnO films exhibited high transmittance of 90% and their energy band gap and thickness were in the range 3.26-3.30 eV and 256-627 nm, respectively.  相似文献   

14.
The influence of oxygen pressure on the structural and electrical properties of vanadium oxide thin films deposited on glass substrates by pulsed laser deposition, via a 5-nm thick ZnO buffer, was investigated. For the purposes of comparison, VO2 thin films were also deposited on c-cut sapphire and glass substrates. During laser ablation of the V metal target, the oxygen pressure was varied between 1.33 and 6.67 Pa at 500 °C, and the interaction and reaction of the VO2 and the ZnO buffer were studied. X-ray diffraction studies showed that the VO2 thin film deposited on a c-axis oriented ZnO buffer layer under 1.33 Pa oxygen had (020) preferential orientation. However, VO2 thin films deposited under 5.33 and 6.67 Pa were randomly oriented and showed (011) peaks. Crystalline orientation controlled VO2 thin films were prepared without such expensive single crystal substrates as c-cut sapphire. The metal-insulator transition properties of the VO2/ZnO/glass samples were investigated in terms of electrical conductivity and infrared reflectance with varying temperatures, and the surface composition was investigated by X-ray photoelectron spectroscopy.  相似文献   

15.
The effects of laser irradiation on the surface microstructure and optical properties of ZnO films deposited on glass substrates were investigated experimentally and compared with those of thermal annealing. X-ray diffraction (XRD) and atomic force microscopy (AFM) measurements showed that the irradiation treatment with an Ar+ laser of 514 nm for 5 min improves the crystalline quality of ZnO thin films through increasing the grain size and enhancing the c-axis orientation, with the effects similar to those of the thermal annealing at 500 °C for 1 h. Laser irradiation was found to be more effective both for the relaxation of the residual compressive stress in the as-grown films and for the modification of the surface morphology. A significant increase in the UV absorption and a widening in the optical band-gap of the films were also observed after laser irradiation.  相似文献   

16.
Zinc oxide (ZnO) thin films were deposited by thermal evaporation of a high quality ZnO powder; the obtained films were then oxidized in the air. We have systematically investigated the influence of annealing temperature ranged from 100 to 400 °C on the films composition and structural and optical properties by using Rutherford Back Scattering (RBS) analysis, X-ray Diffraction (XRD) and UV-Visible transmission respectively. The as grown films exhibit a hexagonal single phase of Zn with no preferential orientation and contain 28% oxygen. With an increase in the annealing temperature the oxygen content is enhanced to the detriment of Zn; samples were totally oxidized at 300 °C and the films are converted to stoichiometric ZnO material. However, in situ XRD pattern analysis shows that the oxidation starts at 250 °C. From the XRD results of annealed Zn samples under an electrical field we inferred that the oxidation mechanism is achieved by the ionization of oxygen atom at the film surface and subsequently followed by the diffusion of the produced ions in the film network.  相似文献   

17.
CdO doped (doping concentration 0, 1, 3 and 16 wt%) ZnO nanostructured thin films are grown on quartz substrate by pulsed laser deposition and the films are annealed at temperature 500 °C. The structural, morphological and optical properties of the annealed films are systematically studied using grazing incidence X-ray diffraction (GIXRD), energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), atomic force microscopy (AFM), Micro-Raman spectra, UV–vis spectroscopy, photoluminescence spectra and open aperture z-scan. 1 wt% CdO doped ZnO films are annealed at different temperatures viz., 300, 400, 500, 600, 700 and 800 °C and the structural and optical properties of these films are also investigated. The XRD patterns suggest a hexagonal wurtzite structure for the films. The crystallite size, lattice constants, stress and lattice strain in the films are calculated. The presence of high-frequency E2 mode and the longitudinal optical A1 (LO) modes in the Raman spectra confirms the hexagonal wurtzite structure for the films. The presence of CdO in the doped films is confirmed from the EDX spectrum. SEM and AFM micrographs show that the films are uniform and the crystallites are in the nano-dimension. AFM picture suggests a porous network structure for 3% CdO doped film. The porosity and refractive indices of the films are calculated from the transmittance and reflectance spectra. Optical band gap energy is found to decrease in the CdO doped films as the CdO doping concentration increases. The PL spectra show emissions corresponding to the near band edge (NBE) ultra violet emission and deep level emission in the visible region. The 16CdZnO film shows an intense deep green PL emission. Non-linear optical measurements using the z-scan technique indicate that the saturable absorption (SA) behavior exhibited by undoped ZnO under green light excitation (532 nm) can be changed to reverse saturable absorption (RSA) with CdO doping. From numerical simulations the saturation intensity (Is) and the effective two-photon absorption coefficient (β) are calculated for the undoped and CdO doped ZnO films.  相似文献   

18.
In this study, nanocolumnar zinc oxide thin films were catalyst-free electrodeposited directly on n-Si and p-Si substrates, what makes an important junction for optoelectronic devices. We demonstrate that ZnO thin films can be grown on Si at low cathodic potential by electrochemical synthesis. The scanning electron microscopy SEM showed that the ZnO thin films consist of nanocolumns with radius of about 150 nm on n-Si and 200 nm on p-Si substrates, possess uniform size distribution and fully covers surfaces. X-ray diffraction (XRD) measurements show that the films are crystalline material and are preferably grown along (0 0 2) direction. The impact of thermal annealing in the temperature range of 150-800 °C on ZnO film properties has been carried out. Low-temperature photoluminescence (PL) spectra of the as-prepared ZnO/Si samples show the extremely high intensity of the near bandgap luminescence along with the absence of visible emission. The optical quality of ZnO thin films was improved after post-deposition thermal treatment at 150 °C and 400 °C in our experiments, however, the luminescence intensity was found to decrease at higher annealing temperatures (800 °C). The obtained results indicate that electrodeposition is an efficient low-temperature technique for the growth of high-quality and crystallographically oriented ZnO thin films on n-Si and p-Si substrates for device applications.  相似文献   

19.
Aluminum doped zinc oxide (AZO) polycrystalline thin films were prepared by sol-gel dip-coating process on optical glass substrates. Zinc acetate solutions of 0.5 M in isopropanol stabilized by diethanolamine and doped with a concentrated solution of aluminum nitrate in ethanol were used. The content of aluminum in the sol was varied from 1 to 3 at.%. Crystalline ZnO thin films were obtained following an annealing process at temperatures between 300 °C and 500 °C for 1 h. The coatings have been characterized by X-ray diffraction, UV-Visible spectrophotometry, scanning electron microscopy, and electrical resistance measurement. The ZnO:Al thin films are transparent (∼ 90%) in near ultraviolet and visible regions. With the annealing temperature increasing from 300 °C to 500 °C, the film was oriented more preferentially along the (0 0 2) direction, the grain size of the film increased, the transmittance also became higher and the electrical resistivity decreased. The X-ray diffraction analysis revealed single-phase ZnO hexagonal wurtzite structure. The best conductors were obtained for the AZO films containing 1 at.% of Al, annealed at 500 °C, 780 nm film thickness.  相似文献   

20.
A novel and simple chemical route was developed for the deposition of ZnO film from aqueous solution, integrating the merits of successive ionic layer adsorption and reaction and chemical bath deposition. ZnO thin films on glass and Si(1 0 0) substrates were deposited with the precursor of zinc-ammonia complex. As-deposited ZnO film exhibits good crystallinity with the hexagonal wurtzite crystalline structure and the preferential orientation along (0 0 2) plane. With a dense and continuous appearance, the film is composed of ZnO particles in even size of 200-300 nm. Under the excitation of 340 nm, strong and sharp near band gap emission (∼391 nm) dominates the photoluminescence spectra with several weak emission peaks related to the deep level (∼450-500 nm). In addition, the mechanism for the deposition process of ZnO from aqueous solution was preliminarily discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号