首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We measured the isomeric yield ratios in the photonuclear reactions of natZr(γ, n)89m,gZr, natZr(γ, xn1p)86m,gY, and 89Y(γ, xn)87m,g,86m,gY by the activation method. The high-purity natural Zr and Y metallic foils in disc shape were irradiated with uncollimated bremsstrahlung beams of 50-, 60-, and 70-MeV generated from an electron linear accelerator at Pohang Accelerator Laboratory. The induced activities in the irradiated foils were measured by the high-resolution γ-ray spectrometric system consisting of a high-purity germanium detector and a multichannel analyzer. The obtained isomeric yield ratios in the formation of 89m,gZr, 87m,gY, and 86m,gY are compared with the corresponding values found in the literature. The measured isomeric yield ratios at the bremsstrahlung energies of 50-, 60-, and 70-MeV are the first measurement except 87Y at 50-MeV bremsstrahlung.  相似文献   

2.
The cross sections for the 175Lu(n, α)172Tm, 176Lu(n, α)173Tm and 175Lu(n, p)175m+gYb reactions have been measured in the neutron energy range of 13.5–14.8 MeV using the activation technique. The first data for 175Lu(n, α)172Tm reaction cross sections are presented. In our experiment, the fast neutrons were produced via the 3H(d, n)4He reaction on K-400 Neutron Generator at Chinese Academy of Engineering Physics (CAEP). Induced gamma activities were measured by a high-resolution (1.69 keV at 1332 keV for 60Co) gamma-ray spectrometer with high-purity germanium (HPGe) detector. Measurements were corrected for gamma-ray attenuations, random coincidence (pile-up), dead time and fluctuation of neutron flux. The neutron fluences were determined by the cross section of 93Nb(n, 2n)92mNb or 27Al(n, α)24Na reactions. The neutron energy in the measurement was by the cross section ratios of 90Zr(n, 2n)89m+gZr and 93Nb(n, 2n)92mNb reactions. The results were discussed and compared with experimental data found in the literature and with results of published empirical formulae.  相似文献   

3.
Three new semi-empirical formulae for the calculation of the (n,α), (n,p) and (n,2n) cross-sections at neutron energy 14.5 MeV were obtained on the basis of experimental data measured by Lanzhou University. Derived from the statistical model with consideration of the Q-value dependence, the new formulae include three, three and four parameters for (n,α), (n,p) and (n,2n) reactions, respectively. The obtained relations are compared with other recently proposed systematics based on the statistical model as well as on the asymmetry parameter dependence.  相似文献   

4.
The neutron capture cross sections for the 152Sm(n,γ)153Sm and 154Sm(n,γ)155Sm reactions at 0.0536 eV neutron energy were measured using an activation technique based on the TRIGA Mark-II research reactor, relative to the reference reaction 197Au(n,γ)198Au. The activity was measured nondestructively using gamma-ray spectroscopy. Our measured values at this neutron energy are the first ones and are compared with 1/v based evaluated cross sections reported in the ENDF/B-VII and JENDL-3.3 libraries. The measured value for the 152Sm(n,γ)153Sm reaction is 0.28% lower than JENDL-3.3 and 0.48% higher than ENDF/B-VII. Our value for the production of 155Sm is about 3% and 2.3% higher than the evaluated value with ENDF/B-VII and JENDL-3.3 at 0.0536 eV, respectively.  相似文献   

5.
为降低瞬发γ射线法在测量重裂变核(n,xnγ)截面中的康普顿坪和本底水平,尝试采用符合方法来分析数据。在中国原子能科学研究院600kV高压倍加器上用两个Clover探测器直接测量56Fe(n,xnγ)5个能点的反应截面,然后采用符合技术分析数据,计算1 238.3keVγ射线截面。此结果与直接方法计算的截面结果基本一致,从而验证了符合测量方法的有效性。  相似文献   

6.
The neutron capture cross-section for the 71Ga(n,  γ)72Ga reaction at 0.0536 eV energy was measured using activation technique based on TRIGA Mark-II research reactor. The 197Au(n, γ)198Au monitor reaction was used to determine the effective neutron flux. Neutron absorption and γ-ray attenuation in gallium oxide pellet were corrected in determination of cross-section. The cross-section for the above reaction at 0.0536 eV amounts to 2.75 ± 0.14 b. As far as we know there are no experimental data available at our investigated energy. So far we are the first, who carried out experiment with 0.0536 eV neutrons for cross-section measurement. The present result is larger than that of JENDL-3.3, but consistent within the uncertainty range. The value of ENDF/B-VII is higher than this work. The result of this work will be useful to observe energy dependence of neutron capture cross-sections.  相似文献   

7.
Activation cross sections of (n, p) and (n, α) reactions were measured by means of the activation method in the neutron energy range of 3.5–5.9 MeV using a deuterium gas target. The irradiated target isotopes were 27Al, 28,29Si, 41K, 51V, 61Ni, 65Cu, 64,67Zn, 69Ga, 79Br, 92Mo and 93Nb. The cross sections of the 29Si(n, p) 29Al, 67Zn(n, p) 67Cu, 69Ga(n, p) 69mZn, 79Br(n, p) 79mSe, and 69Ga(n, α) 66Cu reactions were obtained for the first time in the studied energy range. The d-D neutrons were generated by the deuterium gas target at the Van de Graaff accelerator (KN-VdG) at Nagoya University. All cross section values were determined relative to those of the 115In(n, n′)115mIn reaction. The activities induced by the low-energy neutrons were corrected. For the corrections, the neutron spectra and mean neutron energies at the irradiation positions were calculated taking into account the energy loss of incident deuterons, the angular differential cross section of the d-D reaction and the solid angle subtended by the sample. The systematics of the (n, p) reactions at the neutron energy of 5.0 MeV in the mass range between 27 and 92 were proposed for the first time. This systematics can predict the cross sections within an accuracy of a factor of 1.6.  相似文献   

8.
The prediction of nuclear cross-section data is crucial, especially in the absence of experimental data or in the difficulty of these experimental data. Nickel(Ni) is an important material in fusion and fission reactor technologies, the production of radionuclides in nuclear medicine,and many other fields. In this study, the excitation functions for~(60,62) Ni(a,n),~(60,61) Ni(a,2 n),~(58,64) Ni(a,p), and ~(nat)Ni(a,x) reactions have been investigated by using preequilibrium reaction models. The calculations of the excitation functions for the reactions are used with the geometry-dependent hybrid model in ALICE/ASH code and the two-component exciton model in TALYS 1.8 code. The obtained results are compared to each other, and the experimental data are taken from the EXFOR database.  相似文献   

9.
Toward the revision of 93Nb data in the Japanese Evaluated Nuclear Data Library JENDL-4.0, we calculated cross sections for metastable state production (MSP) in the (n, γ), (n, n′), (n, 2n) and (n, 3n) reactions in the incident energy (En) range from 7 keV to 20 MeV. The cross sections were evaluated using nuclear reaction models such as the spherical optical model, the multi-step statistical model, preequilibrium models, and the distorted-wave Born approximation (DWBA). By adjusting parameters of nuclear level densities, we could obtain the MSP cross sections which are almost consistent with the experimental data.  相似文献   

10.
In the present work, new, differential cross-section values are presented for the natK(p, p0) reaction in the energy range Elab = 3000–5000 keV (with an energy step of 25 keV) and for detector angles between 140° and 170° (with an angular step of 10°). A qualitative discussion of the observed cross-section variations through the influence of strong, closely spaced resonances in the p + 39K system is also presented. Information has also been extracted concerning the 39K(p,α0) reaction for Elab = 4000–5000 keV in the same angular range. As a result, more than ~500 data points will soon be available to the scientific community through IBANDL (Ion Beam Analysis Nuclear Data Library – http://www-nds.iaea.org/ibandl/) and could thus be incorporated in widely used IBA algorithms (e.g. SIMNRA, WINDF, etc.) for potassium depth profiling at relatively high proton beam energies.  相似文献   

11.
The 89Y(n,γ)90mY cross-section has been measured at three neutron energy points between 13.5 and 14.6 MeV using the activation technique and a coaxial HPGe γ-ray detector. The data for the 89Y(n,γ)90mY cross-sections are reported to be 0.39 ± 0.02, 0.43 ± 0.02, and 0.38 ± 0.02 mb at 13.5 ± 0.2, 14.1 ± 0.1, and 14.6 ± 0.2 MeV incident neutron energies, respectively. The first data for the 89Y(n,γ)90mY reaction at neutron energy points of 13.5 and 14.1 MeV are presented. The natural high-purity Y2O3 powder was used as target material. The fast neutrons were produced by the T(d,n)4He reaction. Neutron energies were determined by the method of making cross-section ratios of 90Zr(n,2n)89m+gZr and 93Nb(n,2n)92mNb reactions, and the neutron fluencies were determined using the monitor reaction 93Nb(n,2n)92mNb. The results obtained are compared with existing data.  相似文献   

12.
《Annals of Nuclear Energy》2002,29(17):2019-2027
Cross sections were measured at neutron energies from 13.6 to 14.9 MeV for the reactions 23Na(n,p)23Ne and 23Na(n,α)20F, and 26Mg(n,p)26Na leading to short-lived products. The production of short-lived nuclei and the spectra accumulation have been carried out by cyclic activation method. Corrections were made for the effects of gamma ray attenuation, coincidence summing, pulse pile-up, dead time, neutron flux fluctuations and scattered low energy neutrons.  相似文献   

13.
1.Measurements The experiments were performed on 400 kV Cockcroft-Walton acceleratorof Nanjing University,using the T(d,n)~4He reaction to produce 14.6MeVneutrons.The energy of the incident deuterons was 200keV,the deuteroncurrent was 40μA,and the neutron yield was about 2×10~8 n/s.The ZnS neu-tron detector was used as flux monitor.Each sample to be measured was packedtogether in two standard sample foils of the same dimensions(2×1cm~2 rectang-lar foils and purities better than 99.5%)to form a sandwich so that they areirradiated in the same geometry.The γ-ray activities of the irradiated samplesand monitor foils were measured with a GEM-25210 type HPGe γ-spectrometer.The efficiency of this detector was determined with a ~(152)Eu standard γ source.  相似文献   

14.
The gamma-ray production reactions, 7Li(p, p′)7Li and 7Li(p, γ)8Be, occur along with the neutron production reaction 7Li(p, n)7Be in a p-Li neutron source. These gamma-ray production reactions contribute to a patient's absorbed dose in boron neutron capture therapy (BNCT) when using a neutron beam from the 7Li(p, n)7Be reaction. The present work experimentally determined the thick-target gamma-ray production yields of the 7Li(p, p′)7Li and 7Li(p, γ)8Be reactions at incident proton energies of 1.670 and 1.870 MeV. The present results were compared with previous measurements. The gamma-ray production yield of 7Li(p, p′)7Li was measured to be 30%–50% smaller than as reported by previous studies. For the 7Li(p, γ)8Be reaction, the present thick-target yield is 30% smaller than one estimated from cross-section data measured in previous studies. The results must be included in future dose evaluation for BNCT using a p–Li neutron source.  相似文献   

15.
The thermal-neutron cross-sections and the resonance integrals for the 179Hf(n,γ)180mHf and the 180Hf(n,γ)181Hf reactions have been measured by the activation method. The high purity Hf and Au metallic foils within and without a Cd shield case were irradiated in a neutron field of the Pohang neutron facility. The gamma-ray spectra from the activated foils were measured with a calibrated p-type high-purity Ge detector.In the experimental procedure, the thermal neutron cross-sections, σ0, and resonance integrals, I0, for the 179Hf(n,γ)180mHf and the 180Hf(n,γ)181Hf reactions have been determined relative to the reference values of the 197Au(n,γ)198Au reaction, with σ0 = 98.65 ± 0.09 barn and I0 = 1550 ± 28 barn. In order to improve the accuracy of the experimental results, the interfering reactions and necessary correction factors were taken into account in the determinations. The obtained thermal neutron cross-sections and resonance integrals were σ0 = 0.424 ± 0.018 barn and I0 = 6.35 ± 0.45 barn for the 179Hf(n,γ)180mHf reaction, and σ0 = 12.87 ± 0.52 barn and I0 = 32.91 ± 2.38 barn for the 180Hf(n,γ)181Hf reaction. The present results are in good agreement with recent measurements.  相似文献   

16.
17.
18.
19.
20.
We measured the thermal neutron cross-section and the resonance integral of the reaction 186W(n, γ)187W by the activation method using a 197Au(n, γ)198Au monitor reaction as single comparator. The high-purity natural W and Au metallic foils with and without a cadmium shield case of 0.5 mm thickness were irradiated in a neutron field of the Pohang neutron facility. The induced activities in the samples were measured by high-resolution γ-ray spectrometry with a calibrated p-type high-purity Ge detector. The necessary correction factors for γ-ray attenuation (Fg), thermal neutron self-shielding (Gth), and resonance neutron self-shielding (Gepi) effects, and the epithermal neutron spectrum shape factor (α) were taken into account. The thermal neutron cross-section for the 186W(n, γ)187W reaction has been determined to be 37.2 ± 2.1 barn, relative to the reference value of 98.65 ± 0.09 barn for the 197Au(n, γ)198Au reaction. The present result is, in general, in good agreement with most of the experimental data and the recently evaluated value of ENDF/B-VII.0 by 5.7%. By assuming the cadmium cut-off energy of 0.55 eV, the resonance integral obtained is 461 ± 39 barn, which is determined relative to the reference values of 1550 ± 28 barn for the 197Au(n, γ)198Au reaction. The present resonance integral value is in general good agreement with the recently measured values by 9%. The present result is lower than the evaluated ones by 10-13%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号