首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
针对拓展卡尔曼滤波(Extended Kalman Filter, EKF)算法进行锂离子电池荷电状态(State of Charge, SOC)估算时噪声信息固定从而导致估算精度低的问题,提出噪声信息协方差能够自动匹配的自适应拓展卡尔曼滤波(Adaptive Extended Kalman Filter, AEKF)算法。首先基于电池的双极化(Dual Polarization, DP)等效电路模型进行参数辨识,建立精确的等效模型;然后在动态应力测试(Dynamic Stress Test, DST)工况下对比了EKF滤波算法与AEKF滤波算法噪声协方差矩阵变化情况以及对电池SOC的估算效果,结果表明AEKF滤波算法具有更高的估算精度;最后设置了几组不同的SOC初始偏差,验证了AEKF滤波算法在估算电池SOC时具有鲁棒性强的优点。  相似文献   

2.
对锂离子电池组的工作状态和工作性能进行研究,采用电子技术和计算机控制技术设计智能锂离子电池组均衡控制系统。建立电池组动态模型,创新性地提出基于SOC估计值的主动均衡控制方法,该方法利用抗差无迹Kalman滤波(UKF)得到的高精度SOC估计值作为决策基础。通过18650型锂离子电池组仿真实验表明,所设计的电池组主动均衡系统和新型均衡算法具有较好的实时性和较高的控制精度,对提高纯电动汽车的能量利用率具有重要的现实意义。  相似文献   

3.
近年来,纯电动汽车以其结构简单、无废气排放、能量使用效率高等优势得到了广泛应用。电动汽车产业化的关键在于动力锂电池及其应用技术的产业化发展。为提高纯电动汽车锂电池组的寿命和安全性,对纯电动汽车的锂电池组剩余电量荷电状态(SOC)估算算法进行了研究。采用安时积分法和开路电压法相结合的方法,并引入参数电池额定容量百分比对SOC估算,在一定程度上提高了估测SOC的精度。通过试验测试,验证了锂电池组剩余电量SOC估算算法的有效性。对锂电池组剩余电量SOC估算算法的研究可以延长电池组寿命、保障电池的安全性、降低运行成本,对电动汽车的推广应用起着重要作用。  相似文献   

4.
刘新天  彭泳  何耀  郑昕昕 《计算机仿真》2021,38(5):66-69,328
动力电池的荷电状态(State of Charge,SOC)是电动汽车的重要参数之一,直接影响电动汽车的安全控制与可续行里程的评估.电池总容量作为估算电池SOC的重要变量之一,其与使用环境温度密切相关,而在SOC估计算法中常被认为是恒定值,从而影响不同环境温度下锂电池SOC估计精度.为实现对锂电池SOC的准确估计,考虑温度对锂电池容量等特性参数的影响,通过引入温度补偿模型,并结合扩展卡尔曼滤波(Extended Kalman Filter,EKF)算法实现对锂电池SOC的动态估计.在不同环境温度下模拟电动汽车实际工况对锂电池进行放电试验,并比较未经温度补偿的SOC算法与补偿后的SOC算法精度.研究结果表明,所提出的方法适用于不同温度的锂电池,能实现较为精确的估计.  相似文献   

5.
快速、准确地估算锂离子电池的荷电状态(SOC)是电池管理系统的关键技术之一,有利于延长电池使用寿命并提高使用的安全性。以三元锂电池为研究对象,采用二阶阻容(RC)等效电路模型构建锂离子电池模型,通过递推最小二乘法(RLS)对等效模型参数进行在线辨识,并结合多新息无迹卡尔曼滤波(MSUKF),形成RLS-MSUKF算法,以实现锂离子电池SOC估算。采用多时刻的新息信息对估算值进行校正,以减少误差积累、增强算法的收敛性及提高锂离子电池SOC估算的精度,并在混合脉冲功率特性(HPPC)测试工况下对锂离子电池进行SOC估算。试验结果表明,HPPC工况下的SOC误差稳定控制在0.78%以内,验证了改进算法的良好性能。该算法为优化锂离子电池SOC估算提供了依据,对锂离子电池SOC估算研究具有启发意义。  相似文献   

6.
自动引导车(AGV车)工况特殊,电流积分法估算电池剩余容量(SOC)误差较大,而且存在累积误差;为了提高AGV车电池剩余容量估算的准确度,对扩展卡尔曼滤波法估算AGV车电池剩余容量进行了研究,分析了AGV车特殊工况,提出将扩展卡尔曼滤波法的滤波增益改进为动态调整滤波增益,有效提高扩展卡尔曼滤波法的跟踪效果;实验表明使用扩展卡尔曼滤波法估算AGV车电池剩余容量精度较高,采用动态校正的滤波增益提高了估算过程的跟踪效果,解决了AGV车电池剩余容量估算不准确的问题。  相似文献   

7.
针对锂离子电池SOC(荷电状态)难以估算的问题,通过对电池建立等效的Thevenin电路模型,对不同时刻的SOC的模型参数进行拟合得到动态的模型参数,在Matlab中借助Simulink建立仿真模型,采用模块化结构,建立基于卡尔曼滤波算法的电池SOC估算系统;利用测得的电池电压电流,仿真系统可直接估算出实时的电池SOC,与实际的电池SOC对比,误差保持在2.5%以内,表明该方法可以有效地估计电池的SOC,对于锂离子电池在实际应用的容量估算有着重要意义。  相似文献   

8.
电池荷电状态(SOC)是电池重要的性能指标之一,为电池管理系统实现管理控制提供了重要依据。针对卡尔曼滤波算法不能预估和修正噪声的问题,引入改进的Sage-Husa噪声估计器,构成自适应扩展卡尔曼滤波算法AEKF)估算动力锂电池SOC,同时针对计算机在进行浮点运算时存在单位舍入误差问题,采用UD分解算法,保证任意时刻状态估计协方差矩阵的对称正定性,限制由于计算误差引起的滤波发散,提高算法的精度和稳定性,通过MATLAB仿真对本文算法进行了验证,并与标准EKF算法进行比较,结果表明该算法具有较高的估算精度和稳定性,可以满足应用要求。  相似文献   

9.
为解决锂离子电池荷电状态(SOC)估算精度不高和初值鲁棒性差的问题,提出了一种基于新一代汽车伙伴计划(PNGV)等效电路模型和高斯-厄米特滤波(GHF)算法的锂离子电池SOC估算方法。首先,建立PNGV模型来模拟电池的动静态工作特性,列出该等效电路模型的状态空间方程;然后,利用混合动力脉冲能力特性测试试验,对模型中的动态参数进行辨识,并通过电流激励下的电压响应对比验证了模型及参数的有效性;最后,结合GHF算法得出了算法的系数矩阵和递推过程。在Matlab/Simulink平台上,对该SOC估算方法的估算效果进行了仿真分析与验证。结果表明,无论是在恒流、周期恒定电流和周期变电流工况下,还是在城市道路循环(UDDS)变电流工况下,SOC都能实时跟踪真实值的变化。同时,该算法对初值有较好的鲁棒性。在初始SOC为0.8的情况下,SOC估算最大误差不超过3.7%,具有较高的精度。该算法为锂离子电池SOC的估算提供了一种新的思路。  相似文献   

10.
贾海峰  李聪 《计算机仿真》2021,38(5):55-59,228
针对传统的无迹卡尔曼滤波算法(UKF)估计动力锂电池荷电状态(SOC)时,由于滤波迭代过程中系统噪声不确定,可能导致估计结果精度欠佳的问题,提出一种改进的自适应无迹卡尔曼滤波算法(AUKF)动态地估计锂离子电池的SOC.算法以UKF算法为基础,引入改进的Sage-Husa自适应滤波算法,利用观测数据进行滤波递推的同时,实时更新系统噪声的统计特性.以等效电路模型为基础,采用递推最小二乘法辨识模型参数,应用AUKF算法对电池SOC进行估算,并从实际工况进行仿真验证分析.仿真结果表明,上述算法有效的提高了估计精度,误差稳定性较高.  相似文献   

11.
锂离子动力电池SOC(电池荷电状态)难以直接测量且由于高度非线性所导致估计误差较大。为了减少动力电池SOC估计误差,提高估算精度。在分析了锂离子动力电池电压、温度、电流和放电电量对电池SOC影响后,提出一种新颖的免疫遗传算法(Immune Genetic Algorithm,IGA)和BP神经网络相结合的锂离子动力电池SOC值联合估计方法,该方法首次使用在锂离子动力电池SOC值估计中,采用新颖的免疫遗传算法通过对BP神经网络进行参数寻优,优化网络结构模型,增强神经网络自适应学习效率。通过仿真和动力电池实际工况下实验,结果表明使用新颖的联合估计算法提高了网络的运行效率和电池SOC值估计精度,估计均方根误差控制在2%以内,验证了这一联合估计算法的可行性和有效性,解决了动力电池SOC值估计误差较大的问题。  相似文献   

12.
程清伟 《计算机仿真》2020,37(4):87-90,177
采用当前算法均衡控制电动汽车动力电池组的SOC(电池荷电状态)时,得到电动汽车动力电池组SOC估计值与实际值之间的误差较大,并且存在SOC估计精准度低和控制效果差的问题。提出电动汽车动力电池组SOC均衡控制算法,建立电动汽车动力电池组的Thevenin等效电路模型,在Thevenin等效电路模型的基础上采用扩展卡尔曼滤波算法估算电动汽车动力电池组的SOC,引入标准差判断电动汽车动力电池组的工作状态,根据判断结果对电动汽车动力电池组SOC进行均衡控制。仿真结果表明,所提方法估算SOC的精准度较高、均衡控制效果好,均衡控制后电动汽车动力电池组的容量利用率较高。  相似文献   

13.
锂电池荷电状态(SOC)的准确估算是电动汽车能源管理的关键技术。为了提高锂电池SOC的估算精度,将无迹卡尔曼滤波(UKF)应用于锂电池SOC估算,以减小拓展卡尔曼滤波(EKF)简单线性化带来的误差。搭建电池检测系统的硬件平台,以TMS320F28335型数字信号处理器(DSP)为主控芯片(MCU),实现电压、电流、温度的检测及UKF算法,并设计了相关的电池测试实验。实验结果表明,UKF可以实时估算锂电池SOC,估算误差在4%以内,高于传统的拓展卡尔曼滤波(EKF)。  相似文献   

14.
荷电状态(SOC)和最大可用电量估计是锂离子电池寿命预测中的两个最重要部分;然而与快速时变的SOC比较,最大可用电量的参数变化缓慢;文章提出了一个基于等效模型和多时间尺度的扩展卡尔曼滤波(EKF)预测算法对SOC和最大可用容量分别在不同时间尺度上进行估计,在宏观尺度上利用了SOC估计值作为观测量,更新最大可用电量;针对NCA/C卫星锂离子电池实验数据的仿真结果表明,提出的多时间尺度EKF预测算法与EKF联合估计算法相比,SOC和最大可用电量估计准确度更高,同时提高了计算效率。  相似文献   

15.
电池荷电状态(state of charge,SOC)的精确估计是判断电池是否过充或过放的重要依据,是电动汽车安全、可靠运行的重要保障.传统基于扩展卡尔曼滤波(extended Kalman filter,EKF)的SOC估计方法过度依赖于精确的电池模型,并且要求系统噪声必须服从高斯白噪声分布.为解决上述问题,基于模糊神经网络(fuzzy neural network,FNN)建立模型误差预测模型,并藉此修正扩展卡尔曼滤波测量噪声协方差,以实现当模型误差较小时对状态估计进行测量更新,而当模型误差较大时只进行过程更新.仿真和实验结果表明,该算法能有效消除由于模型误差和测量噪声统计特性不确定而引入的SOC估计误差,误差在1.2%以内,并且具有较好的收敛性和鲁棒性,适用于电动汽车的各种复杂工况,应用价值较高.  相似文献   

16.
This paper proposes a state of charge (SOC) estimator of Lithium-ion battery based on a fractional order impedance spectra model. Firstly, a battery fractional order impedance model is derived on the grounds of the characteristics of Warburg element and constant phase element (CPE) over a wide range of frequency domain. Secondly, a frequency fitting method and parameter identification algorithm based on output error are presented to identify parameters of the fractional order model of Lithium-ion battery. Finally, the fractional order Kalman filter approach is introduced to estimate the SOC of the lithium-ion battery based on the fractional order model. The simulation results show that the fractional-order model can ensure an acceptable accuracy of the SOC estimation, and the error of estimation reaches maximally up to 0.5% SOC.   相似文献   

17.
不一致性问题极大地降低了锂离子电池组的整体性能,均衡控制是目前能有效改善电池组间不一致性的唯一办法。在分析了目前主流均衡设计方案的基础上,针对Buck-Boost均衡电路,提出了以锂电池荷电状态(SOC)为均衡对象的均衡控制策略。同时,设计了一种新式的基于双模型自适应扩展卡尔曼滤器的SOC估算方法。实验结果表明,该均衡控制策略改善了电池组间的不一致性,提高了容量利用率。  相似文献   

18.
Lithium-ion (Li-ion) battery state of charge (SOC) estimation is important for electric vehicles (EVs). The model-based state estimation method using the Kalman filter (KF) variants is studied and improved in this paper. To establish an accurate discrete model for Li-ion battery, the extreme learning machine (ELM) algorithm is proposed to train the model using experimental data. The estimation of SOC is then compared using four algorithms: extended Kalman filter (EKF), unscented Kalman filter (UKF), adaptive extended Kalman filter (AEKF) and adaptive unscented Kalman filter (AUKF). The comparison of the experimental results shows that AEKF and AUKF have better convergence rate, and AUKF has the best accuracy. The comparison from the radial basis function neural network (RBF NN) model also verifies that the ELM model has lighter computation load and smaller estimation error in SOC estimation process. In general, the performance of Li-ion battery SOC estimation is improved by the AUKF algorithm applied on the ELM model.  相似文献   

19.
为完善电动汽车电池管理系统的主要功能,实现对电池准确建模及荷电状态(state of charge,SOC)的准确估计,文章基于二阶RC等效电路建立了一种受控自回归滑动平均模型(controlled auto-regressive moving average,CARMA),推导得到电池开路电压(open circuit voltage,OCV)的最优估计,并结合分段建立的电池OCVSOC模型实现电池SOC估计,从而实现了电池模型参数在线实时辨识以及SOC实时估计,解决了因初值设定不合理而影响SOC估计准确度的问题。仿真结果表明:在美国联邦城市运行工况下,SOC估计误差的绝对值不超过2.39%,实现了较为准确的SOC估计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号