首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
ARF proteins, which mediate vesicular transport, have little or no intrinsic GTPase activity. They rely on the actions of GTPase-activating proteins (GAPs) for their function. The in vitro GTPase activity of the Saccharomyces cerevisiae ARF proteins Arf1 and Arf2 is stimulated by the yeast Gcs1 protein, and in vivo genetic interactions between arf and gcs1 mutations implicate Gcs1 in vesicular transport. However, the Gcs1 protein is dispensable, indicating that additional ARF GAP proteins exist. We show that the structurally related protein Glo3, which is also dispensable, also exhibits ARF GAP activity. Genetic and in vitro approaches reveal that Glo3 and Gcs1 have an overlapping essential function at the endoplasmic reticulum (ER)-Golgi stage of vesicular transport. Mutant cells deficient for both ARF GAPs cannot proliferate, undergo a dramatic accumulation of ER and are defective for protein transport between ER and Golgi. The glo3Delta and gcs1Delta single mutations each interact with a sec21 mutation that affects a component of COPI, which mediates vesicular transport within the ER-Golgi shuttle, while increased dosage of the BET1, BOS1 and SEC22 genes encoding members of a v-SNARE family that functions within the ER-Golgi alleviates the effects of a glo3Delta mutation. An in vitro assay indicates that efficient retrieval from the Golgi to the ER requires these two proteins. These findings suggest that Glo3 and Gcs1 ARF GAPs mediate retrograde vesicular transport from the Golgi to the ER.  相似文献   

2.
Arf proteins are ubiquitous, eukaryotic regulators of virtually every step of vesicular membrane traffic. ADP-ribosylation factors are essential in yeast and the lethality resulting from either overexpression or underexpression (deletion) of Arf genes has previously been ascribed to dysregulation of the secretory process. We have identified a family of four genes (Suppressors of Arf ts, SAT) as high copy suppressors of a loss of function allele of ARF1 (arf1-3). Those proteins with SAT activity were found to contain a minimal consensus motif, including a C2C2H2 cluster with a novel and specific spacing. Genetic interactions between members of this family and with ARF1 are consistent with each sharing a common cellular pathway. Included in this family is Gcs1, a protein previously described (Poon, P. P., Wang, X., Rotman, M., Huber, I., Cukierman, E., Cassel, D., Singer, R. A., and Johnston, G. C. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 10074-10077) to possess Arf GTPase-activating protein (GAP) activity, demonstrating a direct interaction between Arf and at least one of these suppressors. The suppression of the loss of Arf function by overexpression of Gcs1 and demonstration of direct, preferential binding of Gcs1 to the activated form of Arf (Arf.GTP) lead us to conclude that the biological role of Gcs1 is as an effector of the essential function of Arf in mitotic growth, rather than a down-regulator as implied by the biochemical (Arf GAP) activity. Suppression of the growth defect of arf1(-3) cells was observed under conditions that did not alter the secretory defect associated with arf1(-) mutation, indicating that the essential role of Arf in eukaryotes can be distinguished from role(s) in the secretory pathway and appear to employ distinct pathways and effectors.  相似文献   

3.
The small GTP-binding protein ADP-ribosylation factor-1 (ARF1) regulates intracellular transport by modulating the interaction of coat proteins with the Golgi complex. Coat protein association with Golgi membranes requires activated, GTP-bound ARF1, whereas GTP hydrolysis catalyzed by an ARF1-directed GTPase-activating protein (GAP) deactivates ARF1 and results in coat protein dissociation. We have recently cloned a Golgi-associated ARF GAP. Overexpression of GAP was found to result in a phenotype that reflects ARF1 deactivation (Aoe, T., Cukierman, E., Lee, A., Cassel, D., Peters, P. J., and Hsu, V. W. (1997) EMBO J. 16, 7305-7316). In this study, we used this phenotype to define domains in GAP that are required for its function in vivo. As expected, mutations in the amino-terminal part of GAP that were previously found to abolish ARF GAP catalytic activity in vitro abrogated ARF1 deactivation in vivo. Significantly, truncations at the carboxyl-terminal part of GAP that did not affect GAP catalytic activity in vitro also diminished ARF1 deactivation. Thus, a noncatalytic domain is required for GAP activity in vivo. This domain may be involved in the targeting of GAP to the Golgi membrane.  相似文献   

4.
Activation of phospholipase D1 (PLD1) by Arf has been implicated in vesicle transport and membrane trafficking. PLD1 has also been shown to be associated with the small GTPase RalA, which functions downstream from Ras in a Ras-RalA GTPase cascade that facilitates intracellular signal transduction. Although PLD1 associates directly with RalA, RalA has no effect upon the activity of PLD1. However, PLD1 precipitated from cell lysates with immobilized glutathione S-transferase-RalA fusion protein is active. This suggests the presence of an additional activating factor in the active RalA-PLD1 complexes. Because Arf stimulates PLD1, we looked for the presence of Arf in the active RalA-PLD1 complexes isolated from v-Src- and v-Ras-transformed cell lysates. Low levels of Arf protein were detected in RalA-PLD1 complexes; however, if guanosine 5'-[gamma-thio]triphosphate was added to activate Arf and stimulate translocation to the membrane, high levels of Arf were precipitated by RalA from cell lysates. Interestingly, deletion of 11 amino-terminal amino acids unique to Ral GTPases, which abolished the ability of RalA to precipitate PLD activity, prevented the association between RalA and Arf. Brefeldin A, which inhibits Arf GDP-GTP exchange, inhibited PLD activity in v-Src- and v-Ras-transformed cells but not in the nontransformed cells, suggesting that the association of Arf with RalA is required for the increased PLD activity induced by v-Src and v-Ras. These data implicate Arf in the transduction of intracellular signals activated by v-Src and mediated by the Ras-RalA GTPase cascade. Because both Arf and PLD1 stimulate vesicle formation in the Golgi, these data raise the possibility that vesicle formation and trafficking may play a role in the transduction of intracellular signals.  相似文献   

5.
The small GTPase ADP-ribosylation factor 1 (ARF1) is a key regulator of intracellular membrane traffic. Regulators of ARF1, its GTPase-activating protein (GAP) and its guanine nucleotide exchange factor have been identified recently. However, it remains uncertain whether these regulators drive the GTPase cycle of ARF1 autonomously or whether their activities can be regulated by other proteins. Here, we demonstrate that the intracellular KDEL receptor, ERD2, self-oligomerizes and interacts with ARF1 GAP, and thereby regulates the recruitment of cytosolic ARF1 GAP to membranes. Because ERD2 overexpression enhances the recruitment of GAP to membranes and results in a phenotype that reflects ARF1 inactivation, our findings suggest that ERD2 regulates ARF1 GAP, and thus regulates ARF1-mediated transport.  相似文献   

6.
ADP-ribosylation factor (ARF) is a highly conserved, low molecular mass (ca. 21 kDa) GTP-binding protein that has been implicated in vesicle trafficking and signal transduction in yeast and mammalian cells. However, little is known of ARF in plant systems. A putative ARF polypeptide was identified in subcellular fractions of the green alga Chlamydomonas reinhardtii, based on [32P]GTP binding and immunoblot assays. A cDNA clone was isolated from Chlamydomonas (Arf1), which encodes a 20.7 kDa protein with 90% identity to human ARF1. Northern blot analyses showed that levels of Arf1 mRNA are highly regulated during 12 h/12 h light/dark (LD) cycles. A biphasic pattern of expression was observed: a transient peak of Arf1 mRNA occurred at the onset of the light period, which was followed ca. 12 h later by a more prominent peak in the early to mid-dark period. When LD-synchronized cells were shifted to continuous darkness, the dark-specific peak of Arf1 mRNA persisted, indicative of a circadian rhythm. The increase in Arf1 mRNA at the beginning of the light period, however, was shown to be light-dependent, and, moreover, dependent on photosynthesis, since it was prevented by DCMU. We conclude that the biphasic pattern of Arf1 mRNA accumulation during LD cycles is due to regulation by two different factors, light (which requires photosynthesis) and the circadian clock. Thus, these studies identify a novel pattern of expression for a GTP-binding protein gene.  相似文献   

7.
Budding of transport vesicles in the Golgi apparatus requires the recruitment of coat proteins and is regulated by ADP ribosylation factor (ARF) 1. ARF1 activation is promoted by guanine nucleotide exchange factors (GEFs), which catalyze the transition to GTP-bound ARF1. We recently have identified a human protein, ARNO (ARF nucleotide-binding-site opener), as an ARF1-GEF that shares a conserved domain with the yeast Sec7 protein. We now describe a human Sec7 domain-containing GEF referred to as ARNO3. ARNO and ARNO3, as well as a third GEF called cytohesin-1, form a family of highly related proteins with identical structural organization that consists of a central Sec7 domain and a carboxy-terminal pleckstrin homology domain. We show that all three proteins act as ARF1 GEF in vitro, whereas they have no effect on ARF6, an ARF protein implicated in the early endocytic pathway. Substrate specificity of ARNO-like GEFs for ARF1 depends solely on the Sec7 domain. Overexpression of ARNO3 in mammalian cells results in (i) fragmentation of the Golgi apparatus, (ii) redistribution of Golgi resident proteins as well as the coat component beta-COP, and (iii) inhibition of SEAP transport (secreted form of alkaline phosphatase). In contrast, the distribution of endocytic markers is not affected. This study indicates that Sec7 domain-containing GEFs control intracellular membrane compartment structure and function through the regulation of specific ARF proteins in mammalian cells.  相似文献   

8.
ADP-ribosylation factors (ARFs) are approximately 20-kDa guanine nucleotide-binding proteins recognized as critical components in intracellular vesicular transport and phospholipase D activation. Both guanine nucleotide-exchange proteins and GTPase-activating proteins (GAPs) for ARFs have been cloned recently. A zinc finger motif near the amino terminus of the ARF1 GAP was required for stimulation of GTP hydrolysis. ARD1 is an ARF family member that differs from other ARFs by the presence of a 46-kDa amino-terminal extension. We had reported that the ARF domain of ARD1 binds specifically GDP and GTP and that the amino-terminal extension acts as a GAP for the ARF domain of ARD1 but not for ARF proteins. The GAP domain of ARD1, synthesized in Escherichia coli, stimulated hydrolysis of GTP bound to the ARF domain of ARD1. Using ARD1 truncations, it appears that amino acids 101-190 are critical for GAP activity, whereas residues 190-333 are involved in physical interaction between the two domains of ARD1 and are required for GTP hydrolysis. The GAP function of the amino-terminal extension of ARD1 required two arginines, an intact zinc finger motif, and a group of residues which resembles a sequence present in Rho/Rac GAPs. Interaction between the two domains of ARD1 required two negatively charged residues (Asp427 and Glu428) located in the effector region of the ARF domain and two basic amino acids (Arg249 and Lys250) found in the amino-terminal extension. The GAP domain of ARD1 thus is similar to ARF GAPs but differs from other GAPs in its covalent association with the GTP-binding domain.  相似文献   

9.
Arfaptin 1, a approximately 39-kDa protein based on the deduced amino acid sequence, had been initially identified in a yeast two-hybrid screen using dominant active ARF3 (Q71L) as bait with an HL-60 cDNA library. It was suggested that arfaptin 1 may be involved in Golgi functions, since the FLAG-tagged protein was associated with Golgi membranes when expressed in COS-7 cells and could be bound to Golgi in vitro in an ADP-ribosylation factor (ARF)- and GTPgammaS-dependent, brefeldin A-inhibited fashion. Arfaptin 2, found in the same two-hybrid screen as arfaptin 1, is 60% identical in amino acid sequence and may or may not have an analogous function. We now report some effects of arfaptin 1 on ARF activation of phospholipase D and cholera toxin ADP-ribosyltransferase. Arfaptin 1 inhibited activation of both enzymes in a concentration-dependent manner and was without effect in the absence of ARF. Two ARF1 mutants that activated the toxin, one lacking 13 N-terminal amino acids and the other, in which 73 residues at the N terminus were replaced with the analogous sequence from ARL1, were not inhibited by arfaptin, consistent with the conclusion that arfaptin interaction requires the N terminus of ARF. This region has also been implicated in phospholipase D activation, but whether the two proteins interact with the same structural elements in ARF remains to be determined. Arfaptin inhibition of the action of ARF5 and ARF6 was less than that of ARF1 and ARF3; its effects were less on nonmyristoylated than myristoylated ARFs. Arfaptin effects on guanine nucleotide binding by ARFs were minimal whether or not a purified ARF guanine nucleotide-exchange protein was present. These findings indicate that arfaptin acts as an inhibitor of ARF actions in vitro, raising the possibility that it has a similar role in vivo.  相似文献   

10.
Retrograde transport from the Golgi to the ER is an essential process. Resident ER proteins that escape the ER and proteins that cycle between the Golgi and the ER must be retrieved. The interdependence of anterograde and retrograde vesicle trafficking makes the dissection of both processes difficult in vivo. We have developed an in vitro system that measures the retrieval of a soluble reporter protein, the precursor of the yeast pheromone alpha-factor fused to a retrieval signal (HDEL) at its COOH terminus (Dean, N., and H.R.B Pelham. 1990. J. Cell Biol. 111:369-377). Retrieval depends on the HDEL sequence; the alpha-factor precursor, naturally lacking this sequence, is not retrieved. A full cycle of anterograde and retrograde transport requires a simple set of purified cytosolic proteins, including Sec18p, the Lma1p complex, Uso1p, coatomer, and Arf1p. Among the membrane-bound v-SNAP receptor (v-SNARE) proteins, Bos1p is required only for forward transport, Sec22p only for retrograde trafficking, and Bet1p is implicated in both avenues of transport. Putative retrograde carriers (COPI vesicles) generated from Golgi-enriched membranes contain v-SNAREs as well as Emp47p as cargo.  相似文献   

11.
The small G protein ARF1 is involved in the coating of vesicles that bud from the Golgi compartments. Its activation is controlled by as-yet unidentified guanine-nucleotide exchange factors. Gea1, the first ARF exchange factor to be discovered in yeast, is a large protein containing a domain of homology with Sec7, another yeast protein that is also involved in secretion. Here we characterized a smaller human protein (relative molecular mass 47K) named ARNO, which contains a central Sec7 domain that promotes guanine-nucleotide exchange on ARF1. ARNO also contains an amino-terminal coiled-coil motif and a carboxy-terminal pleckstrin-homology (PH) domain. The PH domain mediates an enhancement of ARNO exchange activity by negatively charged phospholipid vesicles supplemented with phosphatidylinositol bisphosphate. The exchange activity of ARNO is not inhibited by brefeldin A, an agent known to block vesicular transport and inhibit the exchange activity on ARF1 in cell extracts. This suggests that a regulatory component which is sensitive to brefeldin A associates with ARNO in vivo, possibly through the amino-terminal coiled-coil. We propose that other proteins with a Sec7 domain regulate different members of the ARF family.  相似文献   

12.
Synaptic vesicles can be coated in vitro in a reaction that is ARF-, ATP-, and temperature-dependent and requires synaptic vesicle membrane proteins. The coat is largely made up of the heterotetrameric complex, adaptor protein 3, recently implicated in Golgi-to-vacuole traffic in yeast. Depletion of AP3 from brain cytosol inhibits small vesicle formation from PC12 endosomes in vitro. Budding from washed membranes can be reconstituted with purified AP3 and recombinant ARF1. We conclude that AP3 coating is involved in at least one pathway of small vesicle formation from endosomes.  相似文献   

13.
G protein-coupled receptor activation leads to the membrane recruitment and activation of G protein-coupled receptor kinases, which phosphorylate receptors and lead to their inactivation. We have identified a novel G protein-coupled receptor kinase-interacting protein, GIT1, that is a GTPase-activating protein (GAP) for the ADP ribosylation factor (ARF) family of small GTP-binding proteins. Overexpression of GIT1 leads to reduced beta2-adrenergic receptor signaling and increased receptor phosphorylation, which result from reduced receptor internalization and resensitization. These cellular effects of GIT1 require its intact ARF GAP activity and do not reflect regulation of GRK kinase activity. These results suggest an essential role for ARF proteins in regulating beta2-adrenergic receptor endocytosis. Moreover, they provide a mechanism for integration of receptor activation and endocytosis through regulation of ARF protein activation by GRK-mediated recruitment of the GIT1 ARF GAP to the plasma membrane.  相似文献   

14.
ADP ribosylation factor (ARF) is thought to play a critical role in recruiting coatomer (COPI) to Golgi membranes to drive transport vesicle budding. Yeast strains harboring mutant COPI proteins exhibit defects in retrograde Golgi to endoplasmic reticulum protein transport and striking cargo-selective defects in anterograde endoplasmic reticulum to Golgi protein transport. To determine whether arf mutants exhibit similar phenotypes, the anterograde transport kinetics of multiple cargo proteins were examined in arf mutant cells, and, surprisingly, both COPI-dependent and COPI-independent cargo proteins exhibited comparable defects. Retrograde dilysine-mediated transport also appeared to be inefficient in the arf mutants, and coatomer mutants with no detectable anterograde transport defect exhibited a synthetic growth defect when combined with arf1Delta, supporting a role for ARF in retrograde transport. Remarkably, we found that early and medial Golgi glycosyltransferases localized to abnormally large ring-shaped structures. The endocytic marker FM4-64 also stained similar, but generally larger ring-shaped structures en route from the plasma membrane to the vacuole in arf mutants. Brefeldin A similarly perturbed endosome morphology and also inhibited transport of FM4-64 from endosomal structures to the vacuole. Electron microscopy of arf mutant cells revealed the presence of what appear to be hollow spheres of interconnected membrane tubules which likely correspond to the fluorescent ring structures. Together, these observations indicate that organelle morphology is significantly more affected than transport in the arf mutants, suggesting a fundamental role for ARF in regulating membrane dynamics. Possible mechanisms for producing this dramatic morphological change in intracellular organelles and its relation to the function of ARF in coat assembly are discussed.  相似文献   

15.
ADP-ribosylation factor (ARF) is a small GTP-binding protein that has been implicated in intracellular vesicular transport. ARF regulates the budding of vesicles that mediate endoplasmic reticulum to Golgi and intra-Golgi transport. It also plays an important role in maintaining the function and morphology of the Golgi apparatus. Using a permeabilized cell system derived from GH3 cells, we provide evidence that ARF-1 regulates the formation of nascent secretory vesicles from the trans-Golgi network. Both myristoylated and non-myristoylated forms of recombinant human ARF-1 enhanced secretory vesicle budding about 2-fold. A mutant lacking the first 17 N-terminal residues, as well as one that preferentially binds GDP (T31N) did not stimulate vesicle formation. In contrast, a mutant defective in GTP hydrolysis (Q71L) promoted vesicle budding. Strikingly, a peptide corresponding to the N terminus of human ARF-1 (amino acids 2-17) also stimulated vesicle budding from the trans-Golgi network, in marked contrast to its inhibitory effect on vesicular transport from the endoplasmic reticulum to Golgi. These data demonstrate that in endocrine cells, ARF-1 and in particular its N terminus play an essential role in the formation of secretory vesicles.  相似文献   

16.
The GTP analog GTP gamma S potently inhibits nuclear envelope assembly in cell-free Xenopus egg extracts. GTP gamma S does not affect vesicle binding to chromatin but blocks vesicle fusion. Fusion inhibition by GTP gamma S is mediated by a soluble factor, initially named GSF (GTP gamma S-dependent soluble factor). We previously showed that vesicles pretreated with GTP gamma S plus recombinant mammalian ARF1 were inhibited for fusion, suggesting that "GSF activity" was due to the ARF (ADP-ribosylation factor) family of small GTP-binding proteins. To ask if any soluble proteins other than ARF also inhibited vesicle fusion in the pretreatment assay, we purified GSF activity from Xenopus egg cytosol. At all steps in the purification, fractions containing ARF, but no other fractions, showed GSF activity. The purified GSF was identified as Xenopus ARF by immunoblotting and peptide sequence analysis. Reverse phase HPLC and mass spectrometry revealed that GSF contained at least three distinct ARF proteins, all of which copurified through three chromatography steps. The most abundant isoform was identified as ARF1 (62% of the total GSF), because its experimentally determined mass of 20 791 Da matched within experimental error that predicted by the sequence of the Xenopus ARF1 cDNA, which is reported here. The second-most abundant isoform (25% of GSF activity) was identified as ARF3. We concluded that ARF is most likely the only soluble protein that inhibits nuclear vesicle fusion after pretreatment with GTP gamma S.  相似文献   

17.
Small GTPases of the Ypt/Rab family are involved in the regulation of vesicular transport. Cycling between the GDP- and GTP-bound forms and the accessory proteins that regulate this cycling are thought to be crucial for Ypt/Rab function. Guanine nucleotide exchange factors (GEFs) stimulate both GDP loss and GTP uptake, and GTPase-activating proteins (GAPs) stimulate GTP hydrolysis. Little is known about GEFs and GAPs for Ypt/Rab proteins. In this article we report the identification and initial characterization of two factors that regulate nucleotide cycling by Ypt1p, which is essential for the first two steps of the yeast secretory pathway. The Ypt1p-GEF stimulates GDP release and GTP uptake at least 10-fold and is specific for Ypt1p. Partially purified Ypt1p-GEF can rescue the inhibition caused by the dominant-negative Ypt1p-D124N mutant of in vitro endoplasmic reticulum-to-Golgi transport. This mutant probably blocks transport by inhibiting the GEF, suggesting that we have identified the physiological GEF for Ypt1p. The Ypt1p-GAP stimulates GTP hydrolysis by Ypt1p up to 54-fold, has a higher affinity for the GTP-bound form of Ypt1p than for the GDP-bound form, and is specific to a subgroup of exocytic Ypt proteins. The Ypt1p-GAP activity is not affected by deletion of two genes that encode known Ypt GAPs, GYP7 and GYP1, nor is it influenced by mutations in SEC18, SEC17, or SEC22, genes whose products are involved in vesicle fusion. The GEF and GAP activities for Ypt1p localize to particulate cellular fractions. However, contrary to the predictions of current models, the GEF activity localizes to the fraction that functions as the acceptor in an endoplasmic reticulum-to-Golgi transport assay, whereas the GAP activity cofractionates with markers for the donor. On the basis of our current and previous results, we propose a new model for the role of Ypt/Rab nucleotide cycling and the factors that regulate this process.  相似文献   

18.
Transport of cargo proteins from the endoplasmic reticulum (ER) to the cis-Golgi network is mediated by protein-coated vesicles. The coat, called COPII coat, consists of proteins that are recruited from the cytosol and interact with integral membrane proteins of the ER. In yeast, both cytosolic proteins (Sec13/31, Sec23/24, and Sar1) and ER-associated proteins (Sec12 and others) have been purified and characterized and it has been possible to demonstrate transport vesicle formation in vitro. Arabidopsis thaliana homologs of Sar1 and Sec12 have recently been identified, but little is known about the properties of the proteins or their subcellular distribution. Here we demonstrate that AtSAR1, a 22-kD protein that binds GTP, and AtSEC12, a 43-kD GTP-exchange protein, are both associated with the ER. However, about one-half of the cellular AtSAR1 is present in the cytosol. When AtSAR1 is overexpressed in transgenic plants, the additional protein is also cytosolic. When tissue-culture cells are cold-shocked (12 h at 8 degrees C), AtSAR1 levels appeared to decline and a larger proportion of the total protein was found in the cytosol. Given the known function of AtSAR1 in yeast, we propose that the amount of ER-associated AtSAR1 is an indication of the intensity of the secretory process. Thus, we expect that such a cold shock will adversely affect ER-to-Golgi transport of proteins.  相似文献   

19.
Structure of the Sec7 domain of the Arf exchange factor ARNO   总被引:1,自引:0,他引:1  
Small G proteins switch from a resting, GDP-bound state to an active, GTP-bound state. As spontaneous GDP release is slow, guanine-nucleotide-exchange factors (GEFs) are required to promote fast activation of small G proteins through replacement of GDP with GTP in vivo. Families of GEFs with no sequence similarity to other GEF families have now been assigned to most families of small G proteins. In the case of the small G protein Arf1, the exchange of bound GDP for GTP promotes the coating of secretory vesicles in Golgi traffic. An exchange factor for human Arf1, ARNO, and two closely related proteins, named cytohesin 1 and GPS1, have been identified. These three proteins are modular proteins with an amino-terminal coiled-coil, a central Sec7-like domain and a carboxy-terminal pleckstrin homology domain. The Sec7 domain contains the exchange-factor activity. It was first found in Sec7, a yeast protein involved in secretion, and is present in several other proteins, including the yeast exchange factors for Arf, Geal and Gea2. Here we report the crystal structure of the Sec7 domain of human ARNO at 2 A resolution and the identification of the site of interaction of ARNO with Arf.  相似文献   

20.
The protein trafficking machinery of eukaryotic cells is employed for protein secretion and for the localization of resident proteins of the exocytic and endocytic pathways. Protein transit between organelles is mediated by transport vesicles that bear integral membrane proteins (v-SNAREs) which selectively interact with similar proteins on the target membrane (t-SNAREs), resulting in a docked vesicle. A novel Saccharomyces cerevisiae SNARE protein, which has been termed Vti1p, was identified by its sequence similarity to known SNAREs. Vti1p is a predominantly Golgi-localized 25-kDa type II integral membrane protein that is essential for yeast viability. Vti1p can bind Sec17p (yeast SNAP) and enter into a Sec18p (NSF)-sensitive complex with the cis-Golgi t-SNARE Sed5p. This Sed5p/Vti1p complex is distinct from the previously described Sed5p/Sec22p anterograde vesicle docking complex. Depletion of Vti1p in vivo causes a defect in the transport of the vacuolar protein carboxypeptidase Y through the Golgi. Temperature-sensitive mutants of Vti1p show a similar carboxypeptidase Y trafficking defect, but the secretion of invertase and gp400/hsp150 is not significantly affected. The temperature-sensitive vti1 growth defect can be rescued by the overexpression of the v-SNARE, Ykt6p, which physically interacts with Vti1p. We propose that Vti1p, along with Ykt6p and perhaps Sft1p, acts as a retrograde v-SNARE capable of interacting with the cis-Golgi t-SNARE Sed5p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号