首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A ZrB2-based composite containing 20 vol.% nanosized SiC particles (ZSN) was fabricated at 1900 °C for 30 min under a uniaxed load of 30 MPa by hot-pressing. The microstructure and mechanical properties of the composite were investigated. It was shown that the grain growth of ZrB2 matrix was effectively suppressed by submicrosized SiC particles located along the grain boundaries. In addition, the mechanical properties of ZSN composite were strongly improved by incorporating the nanosized SiC particles into a ZrB2 matrix, especially for flexural strength (925 ± 28 MPa) and fracture toughness (6.4 ± 0.3 MPa•m1/2), which was much higher than that of monolithic ZrB2 and ZrB2-based composite with microsized SiC particles, respectively. The formation of intragranular nanostructures plays an important role in the strengthening and toughening of ZrB2 ceramic.  相似文献   

2.
ZrB2–20 vol.%SiC composites containing 10 vol.% h-BN particles (ZSB) with average grain sizes ranging from 1 μm to 10 μm were hot-pressed. The fracture toughness of the ZSB composites was higher than reported results of monolithic ZrB2 (2.3–3.5 MPa m1/2) and SiC particle reinforced ZrB2 composites (4.0–4.5 MPa m1/2). The improvement in the fracture toughness of the ZSB composites was due to the high aspect ratio of h-BN and weaker interface bonding, which could enhance crack deflection and stress relaxation near the crack-tip. Compared with the flexural strength of the ZrB2–SiC composites, the reduction in the flexural strength of the ZSB composites was attributed to the weaker interface bonding and the lower relative density. Furthermore, improvement in toughness and the reduction in the strength were valuable to improve the thermal shock resistance of the ZSB composites. The ΔTc of ZSB5 material is 400 °C which is higher than ZrB2–20%SiC and ZrB2–15%SiC–5%AlN.  相似文献   

3.
ZrB2–Nb (ZN) composites were prepared through hot-pressing at a temperature of 1800 °C. A contribution of Nb was believed a significant influence on the sinterability, microstructure and mechanical properties of ZN composites. The values of flexural strength of ZN composites rang from 395 to 773 MPa, who are dependent on Nb contents. The highest strength obtained for the ZN composite containing 25 vol.% Nb (773 MPa). A fracture toughness of 7.1 MPa m1/2 of ZN was revealed, which was much higher than that of monolithic ZrB2. The improvement in fracture toughness strongly depended on an introduction of Nb–ZrB2 matrix. Crack deflection and branching were believed to be the toughening mechanism of ZN.  相似文献   

4.
The present paper investigated the microstructure and mechanical properties of ZrB2-10 vol.%SiCp-10 vol.%ZrO2 composites hot pressed at three temperatures. Phase transformability from t-ZrO2 to m-ZrO2 during fracture was analyzed through calculating the volume fractions of m-ZrO2 and t-ZrO2 on polished and fracture surfaces. The densification temperature was found to have a significant effect on the microstructure, phase transformation and the properties of the composites. When the composite was hot pressed at 1950 °C, the average grain size was 9.5 µm, and the fracture toughness was 4.5 MPa·m1/2. Comparatively, when the composite was hot pressed at 1750 °C, the average grain size was 3.4 µm, and the fracture toughness increased by ~ 50% to 6.8 MPa·m1/2.  相似文献   

5.
In the present work, the thermal shock resistance of the ZrB2–SiC–ZrC ceramic was estimated by the water quenching method and the flexural strength of the quenched specimen was measured. The measured critical temperature difference of the ZrB2–SiC–ZrC ceramic was significantly greater than that of the ZrB2–15 vol.% SiC ceramic. The improvement in thermal shock resistance was attributed to its higher fracture toughness (6.7 MPa m1/2) and lower flexural strength (526 MPa) relative to the ZrB2–15 vol.% SiC ceramic (4.1 MPa m1/2 and 795 MPa) based on Griffith fracture criterion. Furthermore, the temperature and thermal stress distributions in the specimen during instantaneous water quenching were simulated by Finite element analysis.  相似文献   

6.
The failure mechanism of the ZrB2-SiC-graphite composite heated by high electric current was investigated. The results indicated that a large numbers of graphite flake was torn along their basal planes, which was attributed to that the thermal stress is perpendicular to graphite flake. The thermal stress resulted from the thermal expansion mismatch during rapid heating was calculated to be above 1.5 GPa using Hsueh's formula. Although the thermal stresses were relaxed through the deformation of graphite, the maximum thermal stresses were higher than the strength of < 500 MPa for the ZrB2-SiC-graphite composite, which resulted in the destruction of the specimen.  相似文献   

7.
The Zr2Al3C4/ZrB2 composites are in situ synthesized by spark plasma sintering using Zr, Al, graphite, and B4C powders as the initial materials. The introduction of ZrB2 can not only evidently hinder the coarsening of Zr2Al3C4 grains, but also benefit the densification and improve the hardness and Young’s modulus of the Zr2Al3C4/ZrB2 composites. When the ZrB2 content is 20 vol.%, the composite shows an optimum fracture toughness value of 4.37 MPa m1/2, about 20% higher than that of the monolithic Zr2Al3C4. The unique mechanical properties can be mainly ascribed to the contribution of ZrB2 as the reinforcing phase hindering the crack propagating. Compared with Zr2Al3C4, the Zr2Al3C4/20 vol.%ZrB2 composite also exhibits a relatively higher thermal conductivity and better oxidation resistance.  相似文献   

8.
The ZrB2-SiC-graphite (ZSG) ceramic was annealed at 1600, 1700 and 1800 °C for different times, respectively. It was revealed that the annealing treatment is favorable to increase the interface bonding and relative density, and to decrease the thermal residual stress, to result in the crimp of the graphite flake. It was the optimal annealing treatment process conditions of 1700 °C and 90 min according to the best combination of the mechanical properties. To compare the mechanical properties of the specimen before the annealing treatment, the hardness, strength and toughness of the specimen annealed at 1700 °C for 90 min were enhanced by 20.6% and 20.2%, decreased by 8.2%, respectively.  相似文献   

9.
The microstructure, hardness, fracture toughness and thermal shock resistance were investigated for 15 vol.% TiC0.3N0.7 whisker reinforced β-sialon (Si6−zAlzO2N8−z with z=0.6) composites with additions of three different volume fractions 2, 5 and 20 vol.%, of an yttrium-containing glass oxynitride phase. The composites were prepared by hot pressing at 1750°C for 90 min under a uniaxial pressure of 30 MPa in nitrogen atmosphere. The TiC0.3N0.7 whiskers were found to survive without deteriorating in morphology or reacting with the β-sialon matrix and/or the glass phase. The TiC0.3N0.7 whiskers had no obvious influence on the matrix microstructure, but their presence improved both the hardness and the fracture toughness of the composites. The highest hardness was obtained for the whisker composite with 2 vol.% glass phase (Hv=18.6 GPa). The fracture toughness and thermal shock resistance improved with increasing glass content. The whisker reinforced composite containing 20 vol.% glass showed the highest fracture toughness (K1C=6.8 MPa m1/2). No unstable crack extension occurred during the thermal shock test of the obtained composites in the temperature interval 90-700°C, but above 700°C severe oxidation of the whiskers precludes further evaluation of thermal shock properties by the indentation-quench method applied.  相似文献   

10.
High-purity and dense Cr2AlC has been successfully fabricated by hot-pressing, using Cr, Al and graphite as raw materials. Delamination, kink bands, monolamellar kink, transgranular crack and transgranular fracture of bulk Cr2AlC are found during the room-temperature test. The density, Vickers hardness, flexural strength, Young's modulus, compressive strength and fracture toughness of the Cr2AlC are 5.17 g/cm3, 4.9 GPa, 469 ± 27 MPa, 282 GPa, 949 ± 22 MPa and 6.22 ± 0.26 MPa m1/2, respectively. The strength of Cr2AlC could be greatly improved by second phase of Cr7C3. And the slipping of basal planes and slip system cold be hindered by Cr7C3, thus resulting in a lower toughness.  相似文献   

11.
2D C/SiC composite was modified with partial BCx matrix by low pressure chemical vapor infiltration technique (LPCVI), which was named as 2D C/SiC-BCx composite. The flexural fracture behavior, mechanism, and strength distribution of 2D C/SiC-BCx composite are investigated. The results indicate that the flexural strength, fracture toughness, and fracture work are 442.1 MPa, 22.84 MPa m1/2, and 19.2 kJ m−2, respectively. The flexural strength of C/SiC-BCx composite decrease about 20% than that of C/SiC composite. However, the fracture toughness and fracture work increase about 19% and 18.5%, respectively. The properties varieties between C/SiC-BCx composite and C/SiC composite can be attributed to the weak-bonding interface between BCx/SiC matrices according to the results of detailed microstructure analysis. The strength distribution of 2D C/SiC-BCx composite follows as Normal distribution or Weibull distribution with σu = 0, and m = 8.1393. The mean value of flexural strength for 2D C/SiC-BCx composite is 443 MPa obtained by theory calculation, which is consistent with experiment result (442.1 MPa) very well.  相似文献   

12.
Tantalum diboride (TaB2) was synthesized by reducing Ta2O5 using B4C and graphite at 1600 °C under flowing Ar. The powder had an average particle size of 0.4 μm with both needle-like and rounded particles. The TaB2 powder was hot pressed to relative densities of 97% at 2000 °C (3.6 μm grain size) and 98% at 2100 °C (5.3 μm grain size). Mechanical properties were measured for TaB2 hot pressed at 2100 °C and were comparable to those of the commonly studied diborides, ZrB2 and HfB2. The Young's modulus was 551 GPa, Vickers' hardness was 25.6 GPa, flexure strength was 555 MPa, and fracture toughness was 4.5 MPa-m1/2.  相似文献   

13.
The processing and mechanical behaviors of Al2O3-xwt.%SiC (x = 1, 2, 5, ASx) nano-composites prepared by the in situ synthesis of SiC from polycarbosilane (PCS) were investigated. The composites were densified by hot pressing. The microstructure and mechanical properties of the sintered composites were analyzed. The results showed that a fully dense structure was obtained when a few nano-SiC were doped and that the fracture toughness and strength were highly improved compared with those of monolithic Al2O3. The fracture toughness reached 5.1 MPa m1/2 in AS2 composite. The maximum flexural strength was 516 MPa obtained in AS1 composite.  相似文献   

14.
Cobalt-coated Al2O3 and TiC powders were prepared using an electroless method to improve resistance to thermal shock. The mixture of cobalt-coated Al2O3 and TiC powders (about 70 wt.% Al2O3-Co + 30 wt.% TiC-Co) was hot-pressed into an Al2O3-TiC-Co composite. The thermal shock properties of the composite were evaluated by indentation technique and compared with the traditional Al2O3-TiC composite. The composites containing 3.96 vol.% cobalt exhibited better resistance to crack propagation, cyclic thermal shock and higher critical temperature difference (ΔTc). The calculation of thermal shock resistance parameters (R parameters) shows that the incorporation of cobalt improves the resistance to thermal shock fracture and thermal shock damage. The thermal physic parameters are changed very little but the flexure strength and fracture toughness of the composites are improved greatly by introducing cobalt into Al2O3-TiC (AT) composites. The better thermal shock resistance of the composites should be attributed to the higher flexure strength and fracture toughness.  相似文献   

15.
We conducted fracture toughness experiments on freestanding copper films with thicknesses ranging from about 800 to 100 nm deposited by electron beam evaporation to elucidate the size effect on fracture toughness in the nano- or submicron-scale. It was found that initially, the crack propagated stably under loading, and then the crack propagation rate rapidly increased, resulting in unstable fracture. The fracture toughness KC was estimated on the basis of the R-curve concept to be 7.81 ± 1.22 MPa m1/2 for the 800-nm-thick film, 6.63 ± 1.05 MPa m1/2 for the 500-nm-thick film and 2.34 ± 0.54 MPa m1/2 for the 100-nm-thick film. Thus, a clear size effect was observed. The fracture surface suggested that the crack underwent large plastic deformation in the thicker 800-nm and 500-nm films, whereas it propagated with highly localized plastic deformation in the thinner 100-nm film. This size effect in fracture toughness might be related to a transition in deformation and fracture morphology near the crack tip.  相似文献   

16.
ZrB2–SiC nanocomposite ceramics toughened by ZrO2 fiber were fabricated by spark plasma sintering (SPS) at 1700 °C. The content of ZrO2 fiber incorporated into the ZrB2–SiC nanocomposites ranged from 5 mass% to 20 mass%. The content, microstructure, and phase transformation of ZrO2 fiber exhibited remarkable effects on the fracture toughness of the ZrO2(f)/ZrB2–SiC composites. Fracture toughness of the composites greatly improved to a maximum value of 6.56 MPa m1/2 ± 0.3 MPa m1/2 by the addition of 15 mass% of ZrO2 fiber. The microstructure of the ZrO2 fiber exhibited certain alterations after the SPS process, which enhanced crack deflection and crack bridging and affected fracture toughness. Some microcracks were induced by the phase transformation from t-ZrO2 to m-ZrO2, which was also an important reason behind the improvement in toughness.  相似文献   

17.
Laminated ZrB2/Mo composites, alternately consisting of matrix layers of 80 vol.% ZrB2 + 10 vol.% nano-SiC whiskers + 10 vol.% SiC particles and Mo interlayers, with the addition of Si and B as interlayer adjusting agent, were prepared by roll-compaction and spark plasma sintering (at 1600°C) process. XRD and SEM techniques were used to characterize the phases and microstructure of the obtained composites. The results showed that without the addition of Si and B in the interlayer, interfacial debonding between the matrix layer and interlayer often occurred due to the thermal mismatch between the two kinds of layers. However, the interfacial mismatch could be effectively inhibited by the addition of Si and B to the Mo interlayers. The laminated ZrB2/Mo composites with 6 at.% Si and 4 at.% B in the interlayers showed the highest bending strength at (451±20) MPa and the highest fracture toughness at (7.52±0.12) MPa·m?. MoB, ZrB and Mo5SiB2 were formed by the reactions among ZrB2, Mo and the additions.  相似文献   

18.
The ZrB2–SiC–Graphite ceramic was immerged in the supercritical water for different times. The microcracks appeared on the surface of the specimen and the composition of the microcracks was confirmed by EDS analysis to be ZrO2. The obvious corrosion of SiC and graphite flake on the surface of the specimen was not observed, which was attributed to the dissolution of the oxides of silicon and carbon (graphite) into the supercritical water. The corrosion of the specimen was accelerated as the pressure and temperature of the water increased. XPS analysis was carried out on the specimen corroded in water of 40 ± 1 MPa and 500 ± 10 °C for 75 min, and the significant peak of B 1s was also measured, indicating the presence of the ZrB2 phase on the surface of the specimen. For the specimen immerged in all conditions, the Vickers’ hardness did not reduce, the fracture toughness was improved and the minimal strength of the immerged specimen was still higher than 90% of the original strength of 480 MPa, which indicated that the ZrB2–SiC–Graphite ceramic has excellent resistance to corrosion of the supercritical water applied to reactor.  相似文献   

19.
The toughening effect of the short carbon fibers in the ZrB2–ZrSi2 ceramic composites were investigated, where the ZrB2–ZrSi2 ceramics without carbon fibers were used as the reference. The mechanical properties were evaluated by means of flexural and SENB tests, respectively. The microstructure was characterized by SEM equipped with EDS. The results found that the short carbon fibers were uniformly incorporated in the ZrB2–ZrSi2 matrix and the relative density was about 97.92%. The flexural strength of short carbon fiber-reinforced ZrB2–ZrSi2 composites is 437 MPa; the fracture toughness and the work of fracture are 6.89 MPa m1/2 and 259 J/m2, respectively, which increased significantly in comparing with composites without fibers. The microstructure analysis revealed that the improved fracture toughness could be attributed to the fiber bridging, the fiber–matrix interface debonding and the fiber pullout, which consumed more fracture energy during the fracture process.  相似文献   

20.
This study reports the microstructural analysis and mechanical properties of a ZrB2 ceramic containing long BN-coated Hi-Nicalon SiC fibers. A composite was produced and thoroughly characterized by transmission electron microscopy to study the interfaces at the nanoscale level. Full densification was accomplished by hot pressing at 1450 °C. The fiber in the sintered material retained its pristine aspect, confirming that the coating was effective in preventing degradation due to interactions with the matrix. Pull-out was observed on fractured surfaces, but toughness values were about 4.5 MPa√m, which was comparable to those of ZrB2 materials with SiC additions in the form of particles or short fibers. However, the composites exhibited a controlled fracture behavior, as confirmed by a notably higher work of fracture, 140 J/m2, compared with 20–30 J/m2 of unreinforced ZrB2 or ZrB2 containing chopped fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号