首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HgCdTe grown on large-area Si substrates allows for larger array formats and potentially reduced focal-plane array (FPA) cost compared with smaller, more expensive CdZnTe substrates. The goal of this work is to evaluate the use of HgCdTe/Si for mid-wavelength/long-wavelength infrared (MWIR/LWIR) dual-band FPAs. A series of MWIR/LWIR dual-band HgCdTe triple-layer n-P-n heterojunction (TLHJ) device structures were grown by molecular-beam epitaxy (MBE) on 100-mm (211)Si substrates. The wafers showed low macrodefect density (<300 cm−2) and was processed into 20-μm-unit-cell 640 × 480 detector arrays which were mated to dual-band readout integrated circuits (ROICs) to produce FPAs. The measured 80-K cutoff wavelengths were 5.5 μm for MWIR and 9.4 μm for LWIR, respectively. The FPAs exhibited high pixel operabilities in each band, with noise equivalent differential temperature (NEDT) operabilities of 99.98% for the MWIR band and 99.6% for the LWIR band demonstrated at 84 K.  相似文献   

2.
Status of LWIR HgCdTe-on-Silicon FPA Technology   总被引:1,自引:0,他引:1  
The use of silicon as an alternative substrate to bulk CdZnTe for epitaxial growth of HgCdTe for infrared detector applications is attractive because of potential cost savings as a result of the large available sizes and the relatively low cost of silicon substrates. However, the potential benefits of silicon as a substrate have been difficult to realize because of the technical challenges of growing low-defect-density HgCdTe on silicon where the lattice mismatch is ∼19%. This is especially true for long-wavelength infrared (LWIR) HgCdTe detectors where the performance can be limited by the high (∼5 × 10cm−2) dislocation density typically found in HgCdTe grown on silicon. The current status of LWIR (9 μm to 11 μm at 78 K) HgCdTe on silicon focal-plane arrays (FPAs) is reviewed. Recent progress is covered including improvements in noise equivalent differential temperature (NEDT) and array operability. NEDT of <25 mK and NEDT operability >99% are highlighted for 640 × 480 pixel, 20-μm-pitch FPAs.  相似文献   

3.
Long-wavelength infrared (LWIR) HgCdTe p-on-n double-layer heterojunctions (DLHJs) for infrared detector applications have been grown on 100 mm Ge (112) substrates by molecular beam epitaxy (MBE). The objective of this current work was to grow our baseline p-on-n DLHJ detector structure (used earlier on Si substrates) on 100 mm Ge substrates in the 10 μm to 11 μm LWIR spectral region, evaluate the material properties, and obtain some preliminary detector performance data. Material characterization techniques included are X-ray rocking curves, etch pit density (EPD) measurements, compositional uniformity determined from Fourier-transform infrared (FTIR) transmission, and doping concentrations determined from secondary-ion mass spectroscopy (SIMS). Detector properties include resistance-area product (RoA), spectral response, and quantum efficiency. Results of LWIR HgCdTe detectors and test structure arrays (TSA) fabricated on both Ge and silicon (Si) substrates are presented and compared. Material properties demonstrated include X-ray full-width of half-maximum (FWHM) as low as 77 arcsec, typical etch pit densities in mid 106 cm−2 and wavelength cutoff maximum/minimum variation <2% across the full wafer. Detector characteristics were found to be nearly identical for HgCdTe grown on either Ge or Si substrates.  相似文献   

4.
This paper describes molecular-beam epitaxy growth of mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) dual-band device structures on large-area (6 cm × 6 cm) CdZnTe substrates. Wafer-level composition and defect mapping techniques were used to investigate the limiting mechanisms in improving the cutoff wavelength (λ c) uniformity and reducing the defect density. Structural quality of epitaxial layers was monitored using etch pit density (EPD) measurements at various depths in the epitaxial layers. Finally, 640 × 480, 20-μm-pixel-pitch dual-band focal-plane arrays (FPAs) were fabricated to demonstrate the overall maturity of growth and fabrication processes of epitaxial layers. The MWIR/LWIR dual-band layers, at optimized growth conditions, show a λ c variation of ±0.15 μm across a 6 cm × 6 cm CdZnTe substrate, a uniform low macrodefect density with an average of 1000 cm−2, and an average EPD of 1.5 × 105 cm−2. FPAs fabricated using these layers show band 1 (MWIR) noise equivalent temperature difference (NETD) operability of 99.94% and band 2 (LWIR) NETD operability of 99.2%, which are among the highest reported to date.  相似文献   

5.
The use of silicon as a substrate alternative to bulk CdZnTe for epitaxial growth of HgCdTe for infrared (IR) detector applications is attractive because of potential cost savings as a result of the large available sizes and the relatively low cost of silicon substrates. However, the potential benefits of silicon as a substrate have been difficult to realize because of the technical challenges of growing low defect density HgCdTe on silicon where the lattice mismatch is ∼19%. This is especially true for LWIR HgCdTe detectors where the performance can be limited by the high (∼5×106 cm−2) dislocation density typically found in HgCdTe grown on silicon. We have fabricated a series of long wavelength infrared (LWIR) HgCdTe diodes and several LWIR focal plane arrays (FPAs) with HgCdTe grown on silicon substrates using MBE grown CdTe and CdSeTe buffer layers. The detector arrays were fabricated using Rockwell Scientific’s planar diode architecture. The diode and FPA and results at 78 K will be discussed in terms of the high dislocation density (∼5×106 cm2) typically measured when HgCdTe is grown on silicon substrates.  相似文献   

6.
In this article, we present recent developments of the research in France at LETI infrared laboratory in the field of complex third-generation HgCdTe IRCMOS focal plane arrays (FPAs). We illustrate this with three prototypes of FPAs made at LETI, which have involved some technological improvements from the standard process today in production at Sofradir. We present, using molecular-beam epitaxy (MBE) growth, a 128 × 128 dual-band infrared (photodetector)-complementary metal oxide semiconductor (IRCMOS) with a pitch of 50 μm operating within 2–5 μm. Using the more conventional liquid-phase epitaxy (LPE) growth, we show a new generation of high-performance long linear arrays (1500 × 2; pitch, 30 μm) operating in medium-wavelength infrared (MWIR) or long-wavelength infrared (LWIR) bands based on a modular architecture of butted HgCdTe detection circuit and SiCMOS multiplexers. Finally, we present for the first time a megapixel (1000 × 1000) FPA with a pitch of 15 μm operating in the MWIR band that exhibits a very high performance and pixel operability.  相似文献   

7.
Middle wave infrared (MWIR) HgCdTe p-on-n double-layer heterojunctions (DLHJs) for infrared detector applications have been grown on 100-mm Si (112) substrates by molecular beam epitaxy (MBE) for large format 2,560×512 focal plane arrays (FPAs). In order to meet the performance requirements needed for these FPAs, cutoff and doping uniformity across the 100-mm wafer are crucial. Reflection high-energy electron diffraction (RHEED), secondary ion mass spectrometry (SIMS), Fourier transform infrared spectrometry (FTIR), x-ray, and etch pit density (EPD) were monitored to assess the reproducibility, uniformity, and quality of detector material grown. Material properties demonstrated include x-ray full width half maximum (FWHM) as low as 64 arc-sec, typical etch pit densities in mid-106 cm−2, cutoff uniformity below 5% across the full wafer, and typical density of macrodefects <1000 cm−2. The detector quality was established by using test structure arrays (TSAs), which include miniarray diodes with the similar pitch as the detector array for easy measurement of critical parameters such as diode I-V characteristics and detector quantum efficiency. Typical I-V curves show excellent R0A products and strong reverse breakdown characteristics. Detector quantum efficiency was measured to be in the 60–70% range without an antireflection coating.  相似文献   

8.
Mercury cadmium telluride (HgCdTe) grown on large-area silicon (Si) substrates allows for larger array formats and potentially reduced focal-plane array (FPA) cost compared with smaller, more expensive cadmium zinc telluride (CdZnTe) substrates. In this work, the use of HgCdTe/Si for mid- wavelength/long-wavelength infrared (M/LWIR) dual-band FPAs is evaluated for tactical applications. A number of M/LWIR dual-band HgCdTe triple-layer n-P-n heterojunction device structures were grown by molecular-beam epitaxy (MBE) on 100-mm (211)Si substrates. Wafers exhibited low macrodefect densities (< 300 cm?2). Die from these wafers were mated to dual-band readout integrated circuits to produce FPAs. The measured 81-K cutoff wavelengths were 5.1 μm for band 1 (MWIR) and 9.6 μm for band 2 (LWIR). The FPAs exhibited high pixel operability in each band with noise-equivalent differential temperature operability of 99.98% for the MWIR band and 98.7% for the LWIR band at 81 K. The results from this series are compared with M/LWIR FPAs from 2009 to address possible methods for improvement. Results obtained in this work suggest that MBE growth defects and dislocations present in devices are not the limiting factor for detector operability, with regards to infrared detection for tactical applications.  相似文献   

9.
The heteroepitaxial growth of HgCdTe on large-area Si substrates is an enabling technology leading to the production of low-cost, large-format infrared focal plane arrays (FPAs). This approach will allow HgCdTe FPA technology to be scaled beyond the limitations of bulk CdZnTe substrates. We have already achieved excellent mid-wavelength infrared (MWIR) and short wavelength infrared (SWIR) detector and FPA results using HgCdTe grown on 4-in. Si substrates using molecular beam epitaxy (MBE), and this work was focused on extending these results into the long wavelength infrared (LWIR) spectral regime. A series of nine p-on-n LWIR HgCdTe double-layer heterojunction (DLHJ) detector structures were grown on 4-in. Si substrates. The HgCdTe composition uniformity was very good over the entire 4-in. wafer with a typical maximum nonuniformity of 2.2% at the very edge of the wafer; run-to-run composition reproducibility, realized with real-time feedback control using spectroscopic ellipsometry, was also very good. Both secondary ion mass spectrometry (SIMS) and Hall-effect measurements showed well-behaved doping and majority carrier properties, respectively. Preliminary detector results were promising for this initial work and good broad-band spectral response was demonstrated; 61% quantum efficiency was measured, which is very good compared to a maximum allowed value of 70% for a non-antireflection-coated Si surface. The R0A products for HgCdTe/Si detectors in the 9.6-μm and 12-μm cutoff range were at least one order of magnitude below typical results for detectors fabricated on bulk CdZnTe substrates. This lower performance was attributed to an elevated dislocation density, which is in the mid-106 cm−2 range. The dislocation density in HgCdTe/Si needs to be reduced to <106 cm−2 to make high-performance LWIR detectors, and multiple approaches are being tried across the infrared community to achieve this result because the technological payoff is significant.  相似文献   

10.
Raytheon Vision Systems (RVS, Goleta, CA) in collaboration with HRL Laboratories (Malibu, CA) is contributing to the maturation and manufacturing readiness of third-generation, dual-color, HgCdTe infrared staring focal plane arrays (FPAs). This paper will highlight data from the routine growth and fabrication of 256×256 30-μm unit-cell staring FPAs that provide dual-color detection in the mid-wavelength infrared (MWIR) and long wavelength infrared (LWIR) spectral regions. The FPAs configured for MWIR/MWIR, MWIR/LWIR, and LWIR/LWIR detection are used for target identification, signature recognition, and clutter rejection in a wide variety of space and ground-based applications. Optimized triple-layer heterojunction (TLHJ) device designs and molecular beam epitaxy (MBE) growth using in-situ controls has contributed to individual bands in all dual-color FPA configurations exhibiting high operability (>99%) and both performance and FPA functionality comparable to state-of-the-art, single-color technology. The measured spectral cross talk from out-of-band radiation for either band is also typically less than 10%. An FPA architecture based on a single-mesa, single-indium bump, and sequential-mode operation leverages current single-color processes in production while also providing compatibility with existing second-generation technologies.  相似文献   

11.
High-Performance LWIR MBE-Grown HgCdTe/Si Focal Plane Arrays   总被引:1,自引:0,他引:1  
We have been actively pursuing the development of long-wavelength infrared (LWIR) HgCdTe grown by molecular beam epitaxy (MBE) on large-area silicon substrates. The current effort is focused on extending HgCdTe/Si technology to longer wavelengths and lower temperatures. The use of Si versus bulk CdZnTe substrates is being pursued due to the inherent advantages of Si, which include available wafer sizes (as large as 300 mm), lower cost (both for the substrates and number of die per wafer), compatibility with semiconductor processing equipment, and the match of the coefficient of thermal expansion with silicon read-out integrated circuit (ROIC). Raytheon has already demonstrated low-defect, high-quality MBE-grown HgCdTe/Si as large as 150 mm in diameter. The focal plane arrays (FPAs) presented in this paper were grown on 100 mm diameter (211)Si substrates in a Riber Epineat system. The basic device structure is an MBE-grown p-on-n heterojunction device. Growth begins with a CdTe/ZnTe buffer layer followed by the HgCdTe active device layers; the entire growth process is performed in␣situ to maintain clean interfaces between the various layers. In this experiment the cutoff wavelengths were varied from 10.0 μm to 10.7 μm at 78 K. Detectors with >50% quantum efficiency and R 0 A ∼1000 Ohms cm2 were obtained, with 256 × 256, 30 μm focal plane arrays from these detectors demonstrating response operabilities >99%. Work supported by the Missile Defense Agency (MDA) through CACI Technologies, Inc. subcontract no. 601-05-0088, NVESD technical task order no. TTO-01, prime contract no. DAAB07-03-D-C214, (delivery order no. 0016)  相似文献   

12.
In this paper we show the latest achievements of HgCdTe-based infrared bispectral focal plane arrays (FPAs) at LETI infrared laboratory. We present and compare the two different pixel architectures that are studied now in our laboratory, named “NPN” and “pseudo-planar”. With these two technologies, a wide range of system applications in dual-band detection can be covered. Advantages of both architectures will be pointed out. We also review performances obtained with these different architectures. The first one has been studied for several years in our laboratory, and we review results obtained on FPAs of size 256 × 256 pixels on a 25 μm pitch, in the MWIR/MWIR (3 μm/5 μm) range. Very high noise equivalent temperature difference (NETD) operability is obtained, at 99.8% for the λc = 3 μm band and 98.7% for the λc = 5 μm band. The second one has been developed more recently, to address other applications that need temporal coherence as well as spatial coherence. We show detailed performances measured on pseudo-planar type FPAs of size 256 × 256 pixels on a 30 μm pitch, in the MWIR/LWIR (5 μm/9 μm) range. The results are also very promising for these prototypes, with NETD as low as 15 mK for an integration time as short as 1 ms, and good operability. The main manufacturing issues are also presented and discussed for both pixel architectures. Challenging process steps are, firstly, molecular beam epitaxy (MBE) HgCdTe heterostructure growth, on large substrates (cadmium zinc telluride) and heterosubstrates (germanium), and, secondly, detector array fabrication on a nonplanar surface. In particular, trenches or hole etching steps, photolithography and hybridization are crucial to improve uniformity, number of defects and performances. Some results of surface, structural and electrical characterizations are shown to illustrate these issues. On the basis of these results, the short-term and long-term objectives and trends for our research and development are presented, in terms of pixel pitch reduction, wavelengths, and dual-band FPA size.  相似文献   

13.
In recent years, continuous progress has been published in the development of HgCdTe (MCT) infrared (IR) focal plane arrays (FPAs) fabricated by molecular beam epitaxy on GaAs substrates. In this publication, further characterization of the state-of-the art 1280 × 1024 pixel, 15-μm pitch detector fabricated from this material in both the mid-wavelength (MWIR) and long-wavelength (LWIR) IR region will be presented. For MWIR FPAs, the percentage of defective pixel remains below 0.5% up to an operating temperature (T OP) of around 100 K. For the LWIR FPA, an operability of 99.25% was achieved for a T OP of 76 K. Additionally, the beneficial effect of the inclusion of MCT layers with a graded composition region was investigated and demonstrated on current–voltage (IV) characteristics on test diodes in a MWIR FPA.  相似文献   

14.
Hg1−x Cd x Te samples of x ~ 0.3 (in the midwave infrared, or MWIR, spectral band) were prepared by molecular beam epitaxy (MBE) for fabrication into 30-μm-pitch, 256 × 256, front-side-illuminated, high-density vertically-integrated photodiode (HDVIP) focal plane arrays (FPAs). These MBE Hg1−x Cd x Te samples were grown on CdZnTe(211) substrates prepared in this laboratory; they were ~10-μm thick and were doped with indium to ~5 × 1014 cm−3. Standard HDVIP process flow was employed for array fabrication. Excellent array performance data were obtained from these MWIR arrays with MBE HgCdTe material. The noise-equivalent differential flux (NEΔΦ) operability of the best array is 99.76%, comparable to the best array obtained from liquid-phase epitaxy (LPE) material prepared in this laboratory.  相似文献   

15.
In the past several years, we have made significant progress in the growth of CdTe buffer layers on Si wafers using molecular beam epitaxy (MBE) as well as the growth of HgCdTe onto this substrate as an alternative to the growth of HgCdTe on bulk CdZnTe wafers. These developments have focused primarily on mid-wavelength infrared (MWIR) HgCdTe and have led to successful demonstrations of high-performance 1024×1024 focal plane arrays (FPAs) using Rockwell Scientific’s double-layer planar heterostructure (DLPH) architecture. We are currently attempting to extend the HgCdTe-on-Si technology to the long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) regimes. This is made difficult because the large lattice-parameter mismatch between Si and CdTe/HgCdTe results in a high density of threading dislocations (typically, >5E6 cm−2), and these dislocations act as conductive pathways for tunneling currents that reduce the RoA and increase the dark current of the diodes. To assess the current state of the LWIR art, we fabricated a set of test diodes from LWIR HgCdTe grown on Si. Silicon wafers with either CdTe or CdSeTe buffer layers were used. Test results at both 78 K and 40 K are presented and discussed in terms of threading dislocation density. Diode characteristics are compared with LWIR HgCdTe grown on bulk CdZnTe.  相似文献   

16.
Multicolor infrared (IR) focal planes are required for high-performance sensor applications. These sensors will require multicolor focal plane arrays (FPAs) that will cover various wavelengths of interest in mid wavelength infrared/long wavelength infrared (MWIR/LWIR) and long wavelength infrared/very long wavelength infrared (LWIR/VLWIR) bands. There has been significant progress in HgCdTe detector technology for multicolor MWIR/LWIR and LWIR/VLWIR FPAs.1–3 Two-color IR FPAs eliminate the complexity of multiple single-color IR FPAs and provide a significant reduction of weight and power in simpler, reliable, and affordable systems. The complexity of a multicolor IR detector MWIR/LWIR makes the device optimization by trial and error not only impractical but also merely impossible. Too many different geometrical and physical variables need to be considered at the same time. Additionally, material characteristics are only relatively controllable and depend on the process repeatability. In this context, the ability of performing “simulation experiments” where only one or a few parameters are carefully controlled is paramount for a quantum improvement of a new generation of multicolor detectors for various applications.  相似文献   

17.
High-performance 20-μm unit-cell two-color detectors using an n-p+-n HgCdTe triple-layer heterojunction (TLHJ) device architecture grown by molecular beam epitaxy (MBE) on (211)-oriented CdZnTe substrates with midwavelength (MW) infrared and long wavelength (LW) infrared spectral bands have been demonstrated. Detectors with nominal MW and LW cut-off wavelengths of 5.5 μm and 10.5 μm, respectively, exhibit 78 K LW performance with >70 % quantum efficiency, reverse bias dark currents below 300 pA, and RA products (zero field of view, 150-mV bias) in excess of 1×103 Ωcm2. Temperature-dependent current-voltage (I–V) detector measurements show diffusion-limited LW dark current performance extending to temperatures below 70 K with good operating bias stability (150 mV ± 50 mV). These results reflect the successful implementation of MBE-grown TLHJ detector designs and the introduction of advanced photolithography techniques with inductively coupled plasma (ICP) etching to achieve high aspect ratio mesa delineation of individual detector elements with benefits to detector performance. These detector improvements complement the development of high operability large format 640×480 and 1280×720 two-color HgCdTe infrared focal plane arrays (FPAs) to support third generation forward looking infrared (FLIR) systems.  相似文献   

18.
This paper presents the progress in the molecular beam epitaxy (MBE) growth of HgCdTe on large-area Si and CdZnTe substrates at Raytheon Vision Systems. We report a very high-quality HgCdTe growth, for the first time, on an 8 cm × 8 cm CdZnTe substrate. This paper also describes the excellent HgCdTe growth repeatability on multiple 7 cm × 7 cm CdZnTe substrates. In order to study the percentage wafer area yield and its consistency from run to run, small lots of dual-band long-wave infrared/long-wave infrared triple-layer heterojunction (TLHJ) layers on 5 cm × 5 cm CdZnTe substrates and single-color double-layer heterojunction (DLHJ) layers on 6-inch Si substrates were grown and tested for cutoff wavelength uniformity and micro- and macrovoid defect density and uniformity. The results show that the entire lot of 12 DLHJ-HgCdTe layers on 6-inch Si wafers meet the testing criterion of cutoff wavelength within the range 4.76 ± 0.1 μm at 130 K and micro- and macrovoid defect density of ≤50 cm−2 and 5 cm−2, respectively. Likewise, five out of six dual-band TLHJ-HgCdTe layers on 5 cm × 5 cm CdZnTe substrates meet the testing criterion of cutoff wavelength within the range 6.3 ± 0.1 μm at 300 K and micro- and macrovoid defect density of ≤2000 cm−2 and 500 cm−2, respectively, on the entire wafer area. Overall we have found that scaling our HgCdTe MBE process to a 10-inch MBE system has provided significant benefits in terms of both wafer uniformity and quality.  相似文献   

19.
Molecular beam epitaxy (MBE) growth of HgCdTe on large-size Si (211) and CdZnTe (211)B substrates is critical to meet the demands of extremely uniform and highly functional third-generation infrared (IR) focal-panel arrays (FPAs). We have described here the importance of wafer maps of HgCdTe thickness, composition, and the macrodefects across the wafer not only to qualify material properties against design specifications but also to diagnose and classify the MBE-growth-related issues on large-area wafers. The paper presents HgCdTe growth with exceptionally uniform composition and thickness and record low macrodefect density on large Si wafers up to 6-in in diameter for the detection of short-wave (SW), mid-wave (MW), and long-wave (LW) IR radiation. We have also proposed a cost-effective approach to use the growth of HgCdTe on low-cost Si substrates to isolate the growth- and substrate-related problems that one occasionally comes across with the CdZnTe substrates and tune the growth parameters such as growth rate, cutoff wavelength (λ cutoff) and doping parameters before proceeding with the growth on costly large-area CdZnTe substrates. In this way, we demonstrated HgCdTe growth on large CdZnTe substrates of size 7 cm × 7 cm with excellent uniformity and low macrodefect density. Received December 7, 2007; accepted February 25, 2008  相似文献   

20.
High-quality large-area MBE HgCdTe/Si   总被引:2,自引:0,他引:2  
HgCdTe offers significant advantages over other similar semiconductors, which has made it the most widely utilized variable-gap material in infrared (IR) focal plane array (FPA) technology. HgCdTe hybrid FPAs consisting of two-dimensional detector arrays that are hybridized to Si readout circuits (ROIC) are the dominant technology for second-generation infrared systems. However, one of the main limitations of the HgCdTe materials system has been the size of lattice-matched bulk CdZnTe substrates, used for epitaxially grown HgCdTe, which have been limited to 30 cm2 in production. This size limitation does not adequately support the increasing demand for larger FPA formats which now require sizes up to 2048×2048, and only a single die can be printed per wafer. Heteroepitaxial Si-based substrates offer a cost-effective technology that can be scaled to large wafer sizes and further offer a thermal-expansion-matched hybrid structure that is suitable for large format FPAs. This paper presents data on molecular-beam epitaxy (MBE)-grown HgCdTe/Si wafers with much improved materials characteristics than previously reported. We will present data on 4- and 6-in diameter HgCdTe both with extremely uniform composition and extremely low defects. Large-diameter HgCdTe/Si with nearly perfect compositional uniformity and ultra low defect density is essential for meeting the demanding specifications of large format FPAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号