首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
In this study, single-crystalline silicon (c-Si) photovoltaic (PV) cells and residential PV systems using off-grade silicon supplied from semiconductor industries were evaluated from a life cycle point of view. Energy payback time (EPT) of the residential PV system with the c-Si PV cells made of the off-grade silicon was estimated at 15.5 years and indirect CO2 emission per unit electrical output was calculated at 91 g-C/kWh even in the worst case. These figures were more than those of the polycrystalline-Si and the amorphous-Si PV cells to be used in the near future, but the EPT was shorter than its lifetime and the indirect CO2 emissions were less than the recent average CO2 emissions per kWh from the utilities in Japan. The recycling of the c-Si PV cells should be discussed for the reason of the effective use of energy and silicon material.  相似文献   

2.
This paper compares the performance of a 2.02 kWp off-grid residential solar photovoltaic (PV) power system using PVSYST simulation software for a household in Kunming, Yunnan province, China. The monthly available solar energy; missing energy; array, final, and reference yields, performance ratio; and array capture and system losses were analyzed for five solar tracking modes: fixed tilted plane, seasonal tilt adjustment, horizontal axis tracking, vertical axis tracking, and dual axis tracking. Although there were some similar aspects across the five systems, minimum available solar energy (2461 kWh/y) and maximum missing energy (134.68 kWh/y) were obtained using the fixed tilted plane system (tilt angle = 25°, azimuth angle = 0°), whereas maximum available solar energy (3081 kWh/y) and minimum missing energy (48.53 kWh/y) in October were obtained using the dual axis tracking system. Average monthly performance ratio was maximal for the fixed tilted plane system (0.689), and minimal for the dual axis tracking system (0.596).  相似文献   

3.
Many universities have plans to reduce campus energy consumption with developed energy efficiency strategies, supply the energy needs of the university campus with renewable energy and create a green campus. In order to serve this purpose, this study focuses on the simulation of the installation of an on-grid photovoltaic (PV) power system at the Vocational Colleges Campus, Hitit University. On the other hand, the integration of the simulated PV system with a gas fired-trigeneration system is discussed. Moreover, the study explores opportunities for solar hydrogen generation without energy storage on campus. For the PV system simulation, three different scenarios were created by using web-based PV system design software (HelioScope). Installed powers in the simulation were found as 94.2 kWe, 123.9 kWe, and 157.5 kWe for the low scenario (on the rooftop), high scenario (on the rooftop), and the high + PV canopy arrays scenario (on the rooftop and an outdoor parking area), respectively. The levelized cost of electricity (LCOE) values were 0.061 $/kWh, 0.065 $/kWh, and 0.063 $/kWh for the low scenario, high scenario, and the scenario including PV canopy, respectively. The energy payback time is found to be 6.47–6.94 years for the 20–25 years lifetime of the PV plant. The simulation results showed that the PV system could support it by generating additional electrical energy up to 25% of the existing system. The campus can reduce GHG emissions of 1546–2272 tonnes-CO2eq, which is equivalent to 142–209 ha of forest-absorbing carbon unused during the life of the PV system. Depending on the production and consumption methods utilized on campus, which is a location with relatively large solar potential, the levelized cost of hydrogen (LCOH) of hydrogen generation ranged from 0.054 $/kWhH2 (1.78 $/kgH2) to 0.103 $/kWhH2 (3.4 $/kgH2). Consequently, with proper planning and design, a grid-connected PV-trigeneration-hydrogen generation hybrid system on a university campus may operate successfully.  相似文献   

4.
This article evaluates a 1.4‐kW building integrated grid‐connected photovoltaic plant. The PV plant was installed in the Faculty of Engineering solar energy lab, Sohar University, Oman, and the system data have been collected for a year from July 2017 to June 2018. The grid‐connected system was evaluated in terms of power, energy, specific yield, capacity factor, and cost of energy, and payback period. The measured diffuse and global solar irradiations are 3289 and 6182 Wh/m2, respectively. Four predictive models (TLRN, FRNN‐1, FRNN‐2, and FRNN‐3) using deep learning approach based on RNN and TLRN were proposed to predict the PV current performance through data input of temperature (T) and solar irradiance (G). The experiment results found that the highest energy production, array, reference, and final yields are 245.8 kWh, 3.43 to 5.65 kWh/kWp‐day, 4.61 to 7.33 kWh/kWp‐day, and 3.24 to 4.82 kWh/kWp‐day, respectively. Meanwhile, CF, CoE, and PBP were found to be 21.7%, 0.045 USD/kWh and 11.17 years, respectively. The highest performance for prediction models were found for FRNN‐2 and FRNN‐3 due to they exhibit lower MSE which means being tightly fitted to experiments.  相似文献   

5.
A 100 MW very large-scale photovoltaic power generation (VLS-PV) system is designed assuming that it will be installed in the Gobi desert, which is one of the major deserts in the world. Array arrangement, array support, foundation, wiring, and so on are designed in detail. Then energy payback time (EPT), life-cycle CO2 emission rate and generation cost of the system are estimated based on the methodology of life-cycle analysis. As a result of the estimation, 1.7 year of EPT and 12 g C/kWh of CO2 emission rate are obtained. These show that VLS-PV in the Gobi desert would be very promising for the global energy and environmental issues. The generation cost is calculated at 8.6 cent/kWh assuming that PV module price is one US $/W and system lifetime is 30 years.  相似文献   

6.
In the paper, we analyzed internal thermal transmission characteristics of water‐heating photovoltaic/thermal (PV/T) solar collector covered by photovoltaic (PV) cell, established photothermal conversion model of PV/T solar system, and analyzed the influence of PV cell coverage to photothermal characteristics of PV/T solar system. Results show that the thermal efficiency of PV/T solar system by optimizing PV cells coverage can reach 68%. In addition, by designing four water‐heating PV/T solar system prototypes with PV cell coverage of 0.4, 0.56, 0.7, and 0.82, respectively, we conducted experimental researches for the four prototypes and found that the four prototypes can achieve thermal efficiencies of 58%, 51%, 64%, and 67%, respectively, in heating 250 L of water to 50°C. The experiment results are consistent with theoretical analysis results, indicating that it is feasible to improve thermal characteristics of PV/T solar system by optimizing PV cell coverage. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents comparative performance analysis of photovoltaic (PV) hydrogen production using water, methanol and hybrid sulfur (SO2) electrolysis processes. Proton exchange membrane (PEM) electrolysers are powered by grid connected PV system. In this system design, electrical grid is considered as a virtual energy storage system (VESS) where the surplus of PV production can be injected and subsequently taken to support the electrolyser. Methanol (ME) and hybrid sulfur (HSE) electrolysis are compared to the conventional water electrolysis (WE) in term of operating cell voltage. Based on the experimental results reported in the literature, semi-empirical models describing the relationship between the hydrogen production rate and the electrolyser cell power input are proposed. Furthermore, power and hydrogen management strategy (PHMS) is developed. Case study is carried out to show the impact of each type of electrolysis on the system component sizes and evaluate the hydrogen production potentialities. Results show that the use of ME allows to produce 65% more hydrogen than with using WE. Moreover, the amount of hydrogen produced is almost double in the case of HSE. At Algiers city, based on a grid connected PV/Electrolyser system, it is possible to produce about 25 g/m2 d and 29 g/m2 d of hydrogen, respectively, through ME and HSE compared to 15 g/m2 d of hydrogen when using WE.  相似文献   

8.
So far, the biggest photovoltaic park in Belgium has been injecting all its energy into the electric distribution grid through a power purchase agreement with an electricity supplier. Due to decreasing and volatile wholesale electricity prices, the industrial partners/owners of the photovoltaic park are considering hydrogen storage in an attempt to increase the value proposition of their renewable energy installation. A major objective of the present work is to show how the utilization factor of the electrolyzer is affected by the design of the power supply system when the latter consists only of renewable energy sources instead of using the electric grid. Different hybrid designs were developed, by combining the existing photovoltaic source with wind power and state-of-the-art energy storage technologies (Vanadium Redox Flow or Lithium NMC). Finally, four scenarios were investigated, all considering a 1 MW PEM electrolyzer: A) 15 MW PV, B) 15 MW PV, 2MW Wind, C) 15 MW PV, 2 MW Wind, Battery, D) 15 MW PV, 15 MW Wind. The utilization factor was found as follows, for each scenario respectively: A) 41,5%, B) 65,5%, C) 66,0–86,0%, D) 82,0%. Furthermore, the analysis was extended to include economic evaluations (i.e. payback period, accumulated profit), specifically concerning scenario B and C. The results of this study lead to a number of conclusions such as: i) The utilization of the electrolyzer is limited when its power supply is intermittent. ii) Compared to PV, wind power makes larger contribution to the increase of the utilization factor, iii) 100% utilization can be achieved only if an energy storage system co-exists. iv) With a utilization factor at 65,5% scenario B can deliver a payback period in less than 8 years, if hydrogen is sold above 5€/kg. An analytic overview of all conclusions is presented in the last section of the paper.  相似文献   

9.
Since 2010 the Dutch photovoltaic (PV) market has been growing fast, with around doubling of installed capacity in 2011 and 2012. Four quarterly inventories have been made in 2012 for modules, inverters, and systems that are presently available for purchase in the Netherlands. We have found that the average selling price of modules, inverters, and systems decreased with 44.3, 14, and 7.3–10.2%, respectively: average selling prices are 1.26 €/Wp, 0.41 €/Wp, and 1.46 €/Wp for modules, inverters, and systems on tilted roofs, respectively, at the end of 2012. Average installation costs amount to 0.43 €/Wp. Using an energy yield of 900 kWh/kWp, 25 years system lifetime, 6% discount rate, and 1% operation and maintenance (O&M) cost, a levelized cost of electricity (LCOE) is calculated for a 2.5 kWp system to be 0.194 €/kWh for a system price of 1.98 €/Wp (including installation). Grid parity conditions are apparent, with electricity retail prices of around 0.23 €/kWh.  相似文献   

10.
This paper summarises the first eight months of monitoring of the PHA BONG photovoltaic generation project, a 500 kWp photovoltaic pilot plant, in Mae Hong Son province, Thailand. The local grid in this remote area in the North West of Thailand is very limited in its capacity and cannot be enlarged. It has been in operation since 20 March 2004 by feeding into 400 VAC, 22 kV medium voltage grid. The system consist of a photovoltaic array 1680 modules (140 strings, 12 modules/string; 300 W/module), power conditioning units and battery converter system. During the first eight months of this system's operation, the PV system generated about 383,274 kWh. The average of generating electricity production per day was 1695.9 kWh. It ranged from 1452.3 to 2042.3 kWh. The efficiency of the PV array system ranged from 9 to 12%. The efficiency of the power conditioning units (PCU) is in the range from 92 to 98%. The final yield (YF) ranged from 2.91 to 3.98 h/d and the performance ratio (PR) range from 0.7 to 0.9.  相似文献   

11.
Hydrogen used as an energy carrier and chemical element can be produced by several processes such as gasification of coal and biomass, steam reforming of fossil fuel and electrolysis of water. Each of these methods has its own advantage and disadvantage. Electrolysis process is seen as the best option for quick hydrogen production. Hydrogen generation by methanol electrolysis process (MEP) gained much attention since it guarantees high purity gas and can be compatible with renewable energies. Furthermore, due to its very low theoretical potential (0.02 V), MEP can save more than 65% of electrical energy required to produce 1 kg of hydrogen compared to water electrolysis process (WEP). Electrolytic hydrogen production using solar photovoltaic (PV) energy is positioned to become as one of the preferred options due to the harmful environmental impacts of widely used methane steam reforming process and also since the prices of PV modules are more competitive.In this paper, hydrogen production by MEP using PV energy is investigated. A design of an off grid PV/battery/MethElec system is proposed. Mathematical models of each component of the system are presented. Semi-empirical relationship between hydrogen production rate and power consumption at 80 °C and 4 M concentration is developed. Optimal power and hydrogen management strategy (PHMS) is designed to achieve high system efficiency and safe operation. Case studies are carried out on two tilts of PV array: horizontal and tilted at 36° using measured meteorological data of solar irradiation and ambient temperature of Algiers site. Simulation results reveal great opportunities of hydrogen production using MEP compared to the WEP with 22.36 g/m2 d and 24.38 g/m2 d of hydrogen when using system with horizontal and tilted PV array position, respectively.  相似文献   

12.
Hybrid photovoltaic thermal system is an effective method to convert solar energy into electrical and thermal energy. However, its effectiveness is widely affected due to the high temperature of photovoltaic panel, and it can be minimized by employing nanofluids to the PV/T systems. In this research, the effect of various nanoparticles on the PV/T systems was studied experimentally. The nanofluids Al2O3, CuO, and multiwall carbon nanotube (MWCNT) were dispersed with water at different volume fractions of 0, 0.5, 1, 2.5, and 5 (vol%) using ultrasonication process. The effect of nanomaterials on viscosity and density was classified. All tests were carried out in an outdoor laboratory setup for calibrating the PV temperatures, thermal conductivity, electrical power, electrical efficiency, and overall efficiency. In addition, the energy analyses were also made to estimate the loss of heat owing to the nanofluids. Results show that use of the nanofluid increased the electric power and electrical efficiency of PV/T compared with water. Furthermore, MWCNT and CuO reduced the cell temperature by 19%. Consequently, the nanofluids MWCNT, Al2O3, and CuO produced the impressive values of 60%, 55%, and 52% increase in an average electrical efficiency than conventional PV. Particularly, the MWCNT produced superior results compared with other materials. It is evidently clear from the result that the introduction of the nanofluid increases the thermal efficiency without adding any extra energy to the system. Moreover, insertion of Al2O3, CuO, and MWCNT on PV/T system increases the exergy efficiency more than conventional PV module.  相似文献   

13.
The objective of this study is to evaluate the technical and economic feasibility of stand-alone hybrid photovoltaic (PV)/battery and PV/battery/fuel cell (FC) power systems for a community center comprising 100 households in Kunming by using the Hybrid Optimization Model for Electric Renewable (HOMER) software. HOMER is used to define the optimum sizing and techno-economic feasibility of the system equipment based on the geographical and meteorological data of the study region. In this study, different hybrid power systems are analyzed to select the optimum energy system while considering total net present cost (NPC) and levelized cost of energy (COE). The results showed that the optimal hybrid PV/battery system comprised 500 kW PV modules, 1200 7.6-kWh battery units, and 500 kW power converters. The proposed system has an initial cost of $6,670,000, an annual operating cost of $82,763/yr, a total NPC of $7,727,992, and a levelized COE of $1.536/kWh. While the PV/battery/FC power system is possible, the cost increases were due to the investment cost of the FC system. The optimal PV/battery/FC system has an initial cost of $6,763,000, an annual operating cost of $82,312/yr, a total NPC of $7,815,223, and a levelized COE of $1.553/kWh.  相似文献   

14.
This research work crucially deals with a techno-economic feasibility study for off-grid solar photovoltaic fuel cell (PV/FC) hybrid systems. The hybrid renewable energy system is investigated for feeding electric to remote areas and isolated urban regions in Egypt. To achieve this goal, all the system equipment are modeled, simulated and the area under study data is gathered. The objective function is formulated depending on the total annual cost (TAC). The Flower Pollination Algorithm (FPA), as an efficient recent metaheuristic optimization method, proposed to estimate the optimum number of both PV panels and the FC/electrolyzer/H2 storage tanks set mandatory where the least total net present value (TNPV) is reached.The loss of power supply probability (LPSP) is considered to enhance the performance of the proposed design. The effect of the variation of FC, electrolyzer, H2 storage tanks and the PV power system initial cost on the levelized cost of energy (LCOE) is presented through a comprehensive sensitivity analysis.Through Matlab™ program, the numerical simulation results obtained by the FPA algorithm have been compared to the corresponding outcomes while using the artificial bee colony (ABC) and the Particle Swarm Optimization (PSO) techniques. According to the simulation outcomes analysis, the FPA Algorithm has the less fulfillment time and good rendering between the other algorithms. In addition, the optimum system configuration is acquired using FPA with the optimal hybridization of 27 solar PV, 28 FCs, 58 electrolyzers and 37 H2 storage tanks for an LPSP and PEE of 1.52% and 4.68% respectively. The system TNPV is $3,244,897 with the LCOE of 0.334 $/kWh.  相似文献   

15.
This paper presents the characterization and the modeling of the electric characteristics of currentvoltage and power–voltage of the photovoltaic (PV) panels. The philosophy behind digital simulation of solar energy systems is that experiments which normally should be done on real systems under high assembling costs can be done numerically in a short time on a computer, thus saving time and investments. The electric parameters of PV cells and the optimal electric quantities of PV panels have been analyzed (voltage and power) according to the meteorological variations (Temperature, solar irradiation …). The obtained results show that the diode parameters of the PV cells depend on solar irradiation: the current saturation increases with solar irradiation. This induces a decrease of the optimal voltage with solar irradiation; when the solar irradiation varies from 600 W/m2 to 1000 W/m2. By taking into consideration all the modeling results, the electric behavior of the cells association in parallels or in series, as well as the aging of a PV panel have been analyzed. Moreover, a comparative study between two types of MPPT techniques that are used in photovoltaic systems to extract the maximum power have been introduced which are Perturb and Observe (P &O) and Incremental Conductance (INC).  相似文献   

16.
The UK electricity mix will change significantly in the future. This provides an opportunity to consider the full life cycle sustainability of the options currently considered as most suitable for the UK: gas, nuclear, offshore wind and photovoltaics (PV). In an attempt to identify the most sustainable options and inform policy, this paper applies a sustainability assessment framework developed previously by the authors to compare these electricity options. To put discussion in context, coal is also considered as a significant contributor to the current electricity supply. Each option is assessed and compared in terms of its economic, environmental and social implications, using a range of sustainability indicators. The results show that no one technology is superior and that certain trade‐offs must be made. For example, nuclear and offshore wind power have the lowest life cycle environmental impacts, except for freshwater ecotoxicity for which gas is the best option; coal and gas are the cheapest options (£74 and 66/MWh, respectively, at 10% discount), but both have high global warming potential (1072 and 379 g CO2 eq./kWh); PV has relatively low global warming potential (88 g CO2 eq./kWh) but high cost (£302/MWh), as well as high ozone layer and resource depletion. Nuclear, wind and PV increase some aspects of energy security: in the case of nuclear, this is due to inherent fuel storage capabilities (energy density 290 million times that of natural gas), whereas wind and PV decrease fossil fuel import requirements by up to 0.2 toe/MWh. However, all three options require additional installed capacity for grid management. Nuclear also poses complex risk and intergenerational questions such as the creation of 10.16 m3/TWh of nuclear waste for long‐term geological storage. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
A polymer composite material system and a process for encapsulation of thin film solar cells were developed for profiled roofing elements, in view of building-integrated photovoltaic (PV) applications. Amorphous silicon cells were deposited on a polyethylene naphthalate film and encapsulated with additional polymer layers in the form of a flat laminate using industrial processes. The process technology developed in this work included a pre-forming step of the PV laminate and a moulding step of a glass fibre-reinforced polyester composite. These two steps were optimised using thermo-elastic analyses, with attention paid to laminate designs and process windows compatible with the thermo-mechanical limits of the fragile active PV layers. A demonstrator with standard 1.0 m×1.8 m corrugated roofing profile, a weight of 6.3 kg and 60 W of output power was produced. The long-term endurance of the conformal modules was also validated using humidity-freeze, damp-heat and water immersion tests.  相似文献   

18.
In this study, design and optimization of the hybrid renewable energy system consisting of Photovoltaic (PV)/Electrolyzer/Proton Exchange Membrane Fuel Cell (PEMFC) was investigated to provide electricity and heat for Greenhouse in ?anl?urfa (Turkey). The coupling of a photovoltaic system with PEMFC was preferred to supply continuous production of electric energy throughout the year. Additionally, produced heat from PEMFC was used to heating of the greenhouse by micro cogeneration application. The MATLAB/Simulink was applied to the design and optimization of the proposed hybrid system. In the designed system, solar energy was selected to produce the Hydrogen (H2) required to run the electrolyzer. In cases where the solar energy is not sufficient and cannot meet the electricity requirement for the electrolyzer; the H2 requirement for the operation of the PEMFC was met from the H2 storage tanks and energy continuity was ensured. The electrolyzer was designed for H2 demand of the 3 kW PEMFC which were met the greenhouse energy requirement. PEMFC based hybrid system has 48% electrical and 45% thermal efficiencies. According to optimization results obtained for the proposed hybrid system, the levelized cost of energy was found 0.117 $/kWh. The obtained results show the proposed PV/Electrolyzer/PEMFC hybrid power system provides an applicable option for powering stand-alone application in a self-sustainable expedient.  相似文献   

19.
Accurate hourly photovoltaic (PV) output data are useful for engineering design, cost-effectiveness evaluation, rate design, system operation, transmission planning, risk management, and policy analysis. However, a large sample of hourly metered PV data is seldom available, and engineering simulation is often the only practical means to obtain hourly PV output. Based on an analysis of net energy metering (NEM) funded by the California Public Utilities Commission (CPUC), this paper presents statistically adjusted engineering (SAE) modeling of metered output of 327 roof-top PV installations in California for the 12-month period of January–December 2008. The key findings are: (a) the metered PV output is on an average 80–90% of simulated performance; and (b) the simulated data have useful information for accurately predicting metered PV performance. Plausible causes for (a) include incomplete input data for PV simulation, occasional failures in metered data recording, and less than ideal conditions for PV performance in the real world.  相似文献   

20.
The aim of this research is to analyze the techno‐economic performance of hybrid renewable energy system (HRES) using batteries, pumped hydro‐based, and hydrogen‐based storage units at Sharurah, Saudi Arabia. The simulations and optimization process are carried out for nine HRES scenarios to determine the optimum sizes of components for each scenario. The optimal sizing of components for each HRES scenario is determined based on the net present cost (NPC) optimization criterion. All of the nine optimized HRES scenarios are then evaluated based on NPC, levelized cost of energy, payback period, CO2 emissions, excess electricity, and renewable energy fraction. The simulation results show that the photovoltaic (PV)‐diesel‐battery scenario is economically the most viable system with the NPC of US$2.70 million and levelized cost of energy of US$0.178/kWh. Conversely, PV‐diesel‐fuel cell system is proved to be economically the least feasible system. Moreover, the wind‐diesel‐fuel cell is the most economical scenario in the hydrogen‐based storage category. PV‐wind‐diesel‐pumped hydro scenario has the highest renewable energy fraction of 89.8%. PV‐wind‐diesel‐pumped hydro scenario is the most environment‐friendly system, with an 89% reduction in CO2 emissions compared with the base‐case diesel only scenario. Overall, the systems with battery and pumped hydro storage options have shown better techno‐economic performance compared with the systems with hydrogen‐based storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号