首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Stitch welding of plate covered skeleton structure of Ti–6Al–4V titanium alloys has a variety of applications in aerospace vehicle manufacture. The laser stitch welding of Ti–6Al–4V titanium alloys was carried out by a 4 kW ROFIN fiber laser. Influences of laser welding parameters on the macroscopic geometry, porosity, microstructure and mechanical properties of the stitch welded seams were investigated by digital microscope, optical microscope, scanning electron microscope and universal tensile testing machine. The results showed that the three-pipe nozzle with gas flow rate larger than 5 L/min could avoid oxidization, presenting better shielding effect in comparison with the single-pipe nozzle. Porosity formation could be suppressed with the gap between plate and skeleton less than 0.1 mm, while the existing porosity can be reduced with remelting. The maximum shear strength of stitch welding joint with minimal porosity was obtained by employing laser power of 1700 W, welding speed of 1.5 m/min and defocusing distance of +8 mm.  相似文献   

2.
This article reports the results of a study aimed at using statistical methods to optimize the parameters for laser–arc hybrid butt welding of Ti6Al4V titanium alloy sheets with a thickness of 3.0 mm. The study has examined the effects of the hybrid welding process parameters, such as laser beam power, arc pulse frequency, arc length, arc current, wire speed, laser and arc relative positions, and weld speed. Microstructure has been studied using light microscopy and morphological analysis of weld bead cross sections. This article reports the results of energy and morphological tests.  相似文献   

3.
The Ti—6Al—4V (TC4) alloy powder and forged solid were diffusion bonded by hot isostatic pressing (HIP) to fabricate a powder—solid part. The microstructure of the powder—solid part was observed by scanning electron microscope (SEM). The microhardness and tensile tests were conducted to investigate the mechanical properties. The results showed that the powder compact was near-fully dense, and the powder/solid interface was tight and complete. The microhardness of the interface was higher than that of the powder compact and solid. The fractures of all powder—solid tensile specimens were on the solid side rather than at the interface, which indicated that a good interfacial strength was obtained. The tensile strength and elongation of the powder compact were higher than those of the solid. It is concluded that the HIP process can successfully fabricate high-quality Ti—6Al—4V powder—solid parts, which provides a novel near net shape technology for titanium alloys.  相似文献   

4.
5.
Adiabatic shear band(ASB) was narrow region where softening occurred and concentrated plastic deformation took place. In present study, the effects of height reduction and deformation temperature on ASB were investigated by means of optical microscopy(OM) and scanning electron microscopy(SEM). And the deformation mechanisms within the shear band were discussed thoroughly with the help of transmission electron microscopy(TEM). There is a critical strain for the formation of ASB during warm compression of Ti–6Al–4V alloy. The width of ASB increases with height reduction increasing. Elongated alpha grains within shear band grow up with deformation temperature increasing. Some ultrafine grains that confirm the occurrence of dynamic recrystallization are observed within shear band during warm compression of Ti–6Al–4V alloy.  相似文献   

6.
The tribological properties of N+2-ion-implanted Ti alloy (Ti–6Al–4V) were studied by performing lubricated ball-on-disk tests against steel balls. The friction coefficients of N+2-ion-implanted disks ranged from 0.05 to 0.2, which were lower than that of the unimplanted disk. N+2-ion implantation reduced the volumetric wear rate of the disks as well as that of the steel balls. Moreover, the seizure limit of N+2-ion-implanted disk was increased. These improvements were remarkable for doses above 2.5×1017 ions cm−2. However, N+2-ion implantation did not monotonously improve the tribological properties with increasing ion dose. The results were not simply attributed to an increase in the surface microhardness by N+2-ion implantation. Surface analysis revealed that the structure consisted of titanium oxide on titanium, and titanium nitrides were formed by N+2-ion implantation. The observed transition in the tribological properties of Ti–6Al–4V alloy was discussed in terms of surface structure produced by N+2-ion implantation.  相似文献   

7.
Titanium alloy (Ti–6Al–4V) is one of the materials extensively used in the aerospace industry due to its excellent properties of high specific strength and corrosion resistance, but it also presents problems wherein it is an extremely difficult material to machine. The cost associated with titanium machining is also high due to lower cutting speeds (<60 m/min) and shorter tool life. Laser-assisted machining (LAM) and consequently hybrid machining is utilized to improve the tool life and the material removal rate. The effectiveness of the two processes is studied by varying the tool material and material removal temperature while measuring the cutting forces, specific cutting energy, surface roughness, microstructure and tool wear. Laser-assisted machining improved the machinability of titanium from low (60 m/min) to medium-high (107 m/min) cutting speeds; while hybrid machining improved the machinability from low to high (150–200 m/min) cutting speeds. The optimum material removal temperature was established as 250 °C. Two to three fold tool life improvement over conventional machining is achieved for hybrid machining up to cutting speeds of 200 m/min with a TiAlN coated carbide cutting tool. Tool wear predictions based on 3-D FEM simulation show good agreement with experimental tool wear measurements. Post-machining microstructure and microhardness profiles showed no change from pre-machining conditions. An economic analysis, based on estimated tooling and labor costs, shows that LAM and the hybrid machining process with a TiAlN coated tool can yield an overall cost savings of ~30% and ~40%, respectively.  相似文献   

8.
9.
10.
Three Ti-based amorphous matrix composites containing ductile dendrites were fabricated by adding alloying elements of Ti, Zr, V, Ni, Al and Be into a conventional Ti–6Al–4V alloy, and the deformation mechanisms related to the improvement of tensile ductility were investigated by focusing on how the effective size of ductile dendrites affected the initiation and propagation of deformation bands or shear bands. The composites contained ~73–76 vol.% dendrites ~63–103 μm in size, and had excellent tensile properties with a yield strength of over 1.3 GPa and an elongation of over 7%. In the composite containing very large dendrites, deformation bands were formed at dendrites in the same direction. In the composite containing small dendrites, however, many deformation bands were actively formed inside dendrites in the several directions, and cross each other to form widely deformed areas. This wide and homogeneous deformation in both dendrites and amorphous matrix enhances the tensile ductility, resulting in high strength and elongation occurring simultaneously. In order to theoretically explain the enhanced tensile ductility, a finite-element method (FEM) analysis based on the real microstructures considering dendrite crystal orientations was performed. The FEM simulation results of deformation bands or shear bands were in good agreement with the experimental findings. The reasons for such a good match between the simulation and experimental results are discussed in detail.  相似文献   

11.
12.
The low cycle fatigue(LCF) tests were carried out using symmetrical cyclic loading under total strain amplitude control conditions.The present paper is devoted to investigating the cyclic deformation response of Ti–6Al–4V titanium and the electron-beam-welded(EBW) joint in the following aspects,i.e.,cyclic deformation behavior,fatigue life and fatigue fracture behavior.The results show that the softening of the joint is significant at larger strain ranges,while not obvious at smaller strain ranges.The joint shows shorter fatigue life at larger strain ranges and equivalent fatigue life at smaller strain ranges compared with Ti–6Al–4V base metal.A fatigue crack of the joint not only originates at the surface or subsurface,but also at defects in the fusion zone(FZ).The crack propagation zone of Ti–6Al–4V base metal shows ductile fracture mechanism,while the joint shows brittle fracture mechanism.In all the fatigue fracture zones many dimples appear,showing the typical ductile fracture.  相似文献   

13.
Qu  Yauntao  Luo  Zhiting  Dong  Xin  Zhou  Yanan  Sun  Qi  Wu  Miaomiao  Li  Ning  Yan  Jiazhen  Zhang  Biao  Li  Rui  Xu  Sheng 《Metal Science and Heat Treatment》2022,64(1-2):26-33
Metal Science and Heat Treatment - The effect of annealing at 700, 800, 900 and 1000°C on the microstructure and mechanical properties of alloy Ti – 6% Al – 4% V obtained by...  相似文献   

14.
Abstract

Although Ti–6Al–4V alloys show reasonable weldability characteristics, the joint properties are greatly influenced by the welding processes. Microstructures and tensile and impact properties of welded Ti–6Al–4V alloy were evaluated for high vacuum electron beam welding, CO2 laser beam welding and gas tungsten arc welding. The resultant tensile and impact properties of the welded joints are correlated with the weld metal microstructure and hardness. The results indicate that the electron beam welding is more suitable for Ti–6Al–4V sheet welding and the welding seam without defects can be obtained. The full penetration butt welds are obtained by gas tungsten arc welding process, but they have many drawbacks such as wide weld seam, big deformation and coarse grains. Laser beam welding has many advantages such as the narrowest weld seam, the least deformation and the finest grains, but it should be studied again for the reasons of unstable welding technologies and strict condition.  相似文献   

15.
Metals and Materials International - The design and fabrication of a bilayer Ti6Al4V–Ti6Al4V/30Ta component were performed by using the powder metallurgy process and solid-state sintering as...  相似文献   

16.
The densification kinetics of Ti–6Al–4V powders with spherical or angular shapes are compared in uniaxial die pressing experiments between isothermal conditions (at 1020 °C, in the β-field, where deformation occurs by creep) and thermal cycling (between 860 and 1020 °C, within the range of the α–β phase transformation of the alloy, where transformation-mismatch plasticity is activated). Densification kinetics are only moderately affected by powder shape, but are markedly faster under thermal cycling than under isothermal conditions, as expected from the higher deformation rate achieved under transformation-mismatch plasticity conditions as compared to creep conditions. The densification curves for both creep and mismatch plasticity deformation mechanisms are successfully modeled for various applied stresses and for partial cycling, when transformation is incomplete. Tensile properties of specimens fully densified under thermal cycling conditions are similar to literature values from Ti–6Al–4V densified by isothermal hot isostatic pressing.  相似文献   

17.
18.
A modified surface layer was formed on Ti–6Al–4V alloy by wet peening treatment. The variations of the residual stress, nano-hardness and microstructure of the modified layer with depth from surface were studied using X-ray diffraction analysis, nano-indentation analysis, scanning electron microscopy and transmission electron microscopy observations. The results show that both the compressive residual stress and hardness decrease with increasing depth, and the termination depths are 160 and 80 μm, respectively. The microstructure observation indicates that within 80 μm, the compressive residual stress and the hardness are enhanced by the co-action of the grain refinement strengthening and dislocation strengthening. Within 80–160 μm, the compressive residual stress mainly derives from the dislocation strengthening. The strengthened layer in Ti–6Al–4V alloy after wet peening treatment was quantitatively analyzed by a revised equation with respect to a relation between hardness and yield strength.  相似文献   

19.
Abstract

Titanium based brazing alloys containing chromium, iron, copper, and nickel as β stabilisers have been studied for joining the titanium alloy Ti–6Al–4V. Two of these alloys were selected for use in producing large gap joints. The first brazing alloy, Ti–12Zr–14Cr–12Cu–12Ni (type 1), can be used to braze Ti–6Al–4V below its β transus temperature. Joints of thickness up to 150 μm can be made in a normal brazing cycle without prolonged holding. The interlayer consists of a β titanium alloy with no precipitation of intermetallic compounds. The second brazing alloy, Ti–12Zr–14Cr–6Fe–5Cu–5Ni (type 2), has to be brazed above the β transus temperature of Ti–6Al–4V. Its powders were mixed with pure titanium and Ti–6Al–4V powders and the mixture was used as the joining interlayer. Interlayers 5 mm in thickness were used to produce joints for microstructural examination and mechanical testing. It was found that residual pores in the interlayers were related to the amount of the brazing alloy in the interlayer. A fully dense interlayer could be obtained with 60 wt-% brazing alloy in the interlayer. The as bonded joints revealed tensile strength equal to 50% of that of the base metal. Diffusional treatment of the joints improved the joint efficiency to about 70%, compared with the base metal.  相似文献   

20.
Material failure due to adiabatic shear banding is a characteristic feature of chip formation in machining of Ti–6Al–4V material. In this paper, an enhanced Zerilli–Armstrong (Z-A) based material flow stress model is developed by accounting for the effects of material failure mechanisms such as voids and micro-cracks on the material flow strength during shear band formation. These effects are captured via a multiplicative failure function in the constitutive material flow stress model. The strain and strain rate dependence of the material failure mechanism are explicitly modeled via the failure function. The five unknown constants of the failure function are calibrated using cutting force data and the entire model is verified using separate force, chip segmentation frequency and tool–chip contact length data from orthogonal cutting experiments reported by 0035 and 0040. Model predictions of these quantities based on the enhanced material model are shown to be in good agreement with experiments over a wide range of cutting conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号