共查询到20条相似文献,搜索用时 15 毫秒
1.
During superfusion of permeabilized hepatocytes, submaximal concentrations of inositol 1,4,5-trisphosphate (InsP3) evoked quantal Ca2+ mobilization: a rapid acceleration in the rate of 45Ca2+ release abruptly followed by a biphasic decline to the basal rate before the InsP3-sensitive stores had fully emptied. During the fast component of the decay, the Ca2+ permeability of the stores fell rapidly by 40% (t1/2 = 250 ms) to a state indistinguishable from that evoked by preincubation with InsP3 under conditions that prevented Ca2+ mobilization. This change was accompanied by a decrease in the InsP3 dissociation rate: the response declined more quickly when InsP3 was removed during the initial stages of a response than later. We suggest that InsP3 directly causes its receptor to rapidly switch (t1/2 = 250 ms) between a low-affinity (Kd approximately 1 microM) active, and a higher-affinity (Kd approximately 100 nM) less active, conformation, and that this transition underlies the fast component of the decaying phase of Ca2+ release. Ca2+ continues to leak through the unchanging less active state of the receptor until those stores that responded initially are completely empty, accounting for the slow phase of the response. The requirements for activation of InsP3 receptors are more stringent (InsP3 and then Ca2+ binding) than those for partial inactivation (InsP3 binding); rapid inactivation is therefore likely to determine whether the cytosolic [Ca2+] reaches the threshold for regenerative Ca2+ signals. 相似文献
2.
SK Joseph SV Ryan S Pierson D Renard-Rooney AP Thomas 《Canadian Metallurgical Quarterly》1995,270(8):3588-3593
A number of thiol-reactive agents induce repetitive Ca2+ spiking in cells by a mechanism thought to involve sensitization of the inositol 1,4,5-trisphosphate receptor (IP3R). To further define the basis of this interaction, we have studied the effect of several thiol-reactive agents on [3H]IP3 binding, IP3-gated channel activity, and conformation of the IP3R in membranes from hepatocytes, cultured WB rat liver epithelial cells, and cerebellum microsomes. At 4 degrees C, the organomercurial thiol-reactive agent mersalyl markedly stimulates (3-4fold) [3H]IP3 binding to permeabilized hepatocytes. The closely related molecule, thimerosal, has only a small stimulatory effect under these conditions, and GSSG or N-ethylmaleimide are without effect. The stimulatory effect of mersalyl was associated with a decrease in Kd of the IP3R with no change in Bmax. Mersalyl was without effect on detergent-solubilized hepatocyte binding sites or on the [3H]IP3 binding activity of cerebellum microsomes. In contrast to thimerosal, which potentiates IP3-mediated Ca2+ release, mersalyl blocked IP3-gated Ca2+ channels. Mersalyl pretreatment of WB membranes altered the pattern of immunoreactive receptor fragments generated upon subsequent cleavage of the receptor with proteinase K. This effect was not reproduced by thimerosal and was also not observed in experiments on cerebellum microsomes. We conclude that the WB cell and brain IP3 receptors are differently regulated by modification of thiol groups. Reaction of the WB cell IP3 receptor with mersalyl alters its conformation and modifies the accessibility of sites on the protein that are cleaved by proteinase K. In the presence of mersalyl, the receptor has high affinity for IP3 but is inactive as a Ca2+ channel. This contrasts with the high affinity receptor/active Ca2+ channel induced by thimerosal, suggesting that even closely related thiol agents may interact at different thiol groups. 相似文献
3.
Cyclic ADP-ribose (cADPR) is a potentially important intracellular Ca2+ releasing messenger [1-5]. In pancreatic acinar cells where intracellular infusion of both inositol trisphosphate (IP3) and cADPR evoke repetitive Ca2+ spiking [6], the cADPR antagonist 8-NH2-cADPR [7], which blocks cADPR-evoked but not IP3-evoked Ca2+ spiking, can abolish Ca2+ spiking induced by physiological levels of the peptide hormone cholecystokinin (CCK) [8]. We have tested the effect of intracellular glucose on the ability of IP3, cADPR and CCK to induce cytosolic Ca2+ spikes in pancreatic acinar cells. In order to gain access to the intracellular cytosol, we used the whole-cell configuration of the patch-clamp technique [9] and monitored cytosolic Ca2+ concentration changes by measuring the Ca(2+)-dependent ionic current [10-13]. Glucose (300 microM to 10 mM) in the patch pipette/intracellular solution prevented cADPR from evoking Ca2+ spiking. The same effect was observed with 2-deoxy-glucose, but not L-glucose. In contrast, glucose potentiated IP3-evoked Ca2+ spiking. CCK evoked Ca2+ spiking irrespective of the presence or absence of intracellular glucose, but the cADPR antagonist 8-NH2-cADPR blocked CCK-evoked Ca2+ spiking only in the absence of intracellular glucose. This suggests that the hormone can evoke Ca2+ spiking via either the IP3 or the cADPR pathway. The intracellular glucose level may control a switch between these two pathways. 相似文献
4.
Although several second messengers are known to be involved in invertebrate photoresponses, the mechanism underlying invertebrate phototransduction remains unclear. In the present study, brief injection of inositol trisphosphate into Hermissenda photoreceptors induced a transient Na+ current followed by burst activity, which accurately reproduced the native photoresponse. Injection of Ca2+ did not induce a significant change in the membrane potential but potentiated the native photoresponse. Injection of a Ca2+ chelator decreased the response amplitude and increased the response latency. Injection of cGMP induced a Ca2+-dependent, transient depolarization with a short latency. cAMP injection evoked Na+-dependent action potentials without a rise in membrane potential. Taken together, these results suggest that phototransduction in Hermissenda is mediated by Na+ channels that are directly activated by inositol trisphosphate without mobilization of cytosolic Ca2+. 相似文献
5.
Dorsal-ventral patterning in the Xenopus egg becomes established midway through the first cell cycle during a 30 degree rotation of the subcortical yolk mass relative to the egg cortex. This 'rotation of symmetrisation' is microtubule dependent, and its direction is thought to be cued by the usually eccentric sperm centrosome. The fact that parthenogenetically activated eggs also undergo a directed rotation, despite the absence of a sperm centrosome, suggests that an endogenous asymmetry in the unfertilised egg supports the directed polymerisation of microtubules in the vegetal cortex, in the way that an eccentric sperm centrosome would in fertilised eggs. Consistent with this idea, we noticed that the maturation spot is usually located an average of more than 15 degrees from the geometric centre of the pigmented animal hemisphere. In parthenogenetically activated eggs, this eccentric maturation spot can be used to predict the direction of rotation. Although in most fertilised eggs the yolk mass rotates toward the sperm entry point (SEP) meridian, occasionally this relationship is perturbed significantly; in such eggs, the maturation spot is never on the same side of the egg as the SEP. In oocytes tilted 90 degrees from upright during maturation in vitro, the maturation spot developed 15 degrees or more from the centre of the pigmented hemisphere, always displaced towards the point on the equator that was up during maturation. This experimentally demonstrated lability is consistent with an off-axis oocyte orientation during oogenesis determining its eccentric maturation spot position, and, in turn, its endogenous rotational bias. 相似文献
6.
A role for thioredoxin in metazoan DNA synthesis has been assessed by injecting rapidly dividing Xenopus eggs with purified heterologous thioredoxins, which might act as inhibitors if they were to replace resident thioredoxins in some but not all reaction steps. Of 10 tested proteins, spinach chloroplast thioredoxin m is the most potent inhibitor. Eggs cleave and produce cells lacking nuclei. DNA synthesis is severely reduced. Development arrests before gastrulation. In egg extracts, thioredoxin m inhibits incorporation of radioactive dCTP into DNA of sperm nuclei and M13 phage. Inhibition exceeds 90% when thioredoxin m and M13 DNA are preincubated together. The data support the interpretation that thioredoxins normally participate in initiation of metazoan DNA synthesis. 相似文献
7.
ADP-ribosyl cyclase catalyzes the synthesis of two structurally and functionally different Ca2+ releasing molecules, cyclic ADP-ribose (cADPR) from beta-NAD and nicotinic acid-adenine dinucleotide phosphate (NAADP) from beta-NADP. Their Ca2+-mobilizing effects in ascidian oocytes were characterized in connection with that induced by inositol 1,4,5-trisphosphate (InsP3). Fertilization of the oocyte is accompanied by a decrease in the oocyte Ca2+ current and an increase in membrane capacitance due to the addition of membrane to the cell surface. Both of these electrical changes could be induced by perfusion, through a patch pipette, of nanomolar concentrations of cADPR or its precursor, beta-NAD, into unfertilized oocytes. The changes induced by beta-NAD showed a distinctive delay consistent with its enzymatic conversion to cADPR. The cADPR-induced changes were inhibited by preloading the oocytes with a Ca2+ chelator, indicating the effects were due to Ca2+ release induced by cADPR. Consistently, ryanodine (at high concentration) or 8-amino-cADPR, a specific antagonist of cADPR, but not heparin, inhibited the cADPR-induced changes. Both inhibitors likewise blocked the membrane insertion that normally occurred at fertilization consistent with it being mediated by a ryanodine receptor. The effects of NAADP were different from those of cADPR. Although NAADP induced a similar decrease in the Ca2+ current, no membrane insertion occurred. Moreover, pretreatment of the oocytes with NAADP inhibited the post-fertilization Ca2+ oscillation while cADPR did not. A similar Ca2+ oscillation could be artificially induced by perfusing into the oocytes a high concentration of InsP3 and NAADP could likewise inhibit such an InsP3-induced oscillation. This work shows that three independent Ca2+ signaling pathways are present in the oocytes and that each is involved in mediating distinct changes associated with fertilization. The results are consistent with a hierarchical organization of Ca2+ stores in the oocyte. 相似文献
8.
K Nitta K Ozaki K Hagioita Y Tsukamoto Y Terasaki N Suzuki A Sano M Hosono H Kawauchi Y Takayanagi 《Canadian Metallurgical Quarterly》1993,16(4):353-356
A 122 kDa RNase from eggs of Xenopus laevis was purified by sequential chromatography on Sephadex G-75, DEAE-cellulose, heparin-Sepharose and TSK gel G3000SW columns, and gave a single 60 kDa band on SDS-polyacrylamide gel electrophoresis under reducing and nonreducing conditions. The RNase composed of two 60 kDa subunits is able to recognize pyrimidine bases specifically. The pH optimum of the RNase was 7.5 in Tris-HCl buffer. The enzyme activity was abolished by treatment at 80 degrees C for 5 min and pH 2 or 12 for 1 h. Since egg lectins with RNase activity obtained from Rana catesbeiana and R. japonica and bovine pancreatic RNase A show about 30% protein homology and these three proteins are 12-14 kDa heat-stable RNases, [K. Titani, K. Takio, M. Kuwada, K. Nitta, F. Sakakibara, H. Kawauchi, G. Takayanagi and S. Hakomori, Biochemistry, 26, 2189 (1987); Y: Kamiya, F. Oyama, R. Oyama, F. Sakakibara, K. Nitta, H. Kawauchi, Y. Takayanagi and K. Titani, J. Biochem. (Tokyo), 108, 139 (1990)], the data suggest that the X. laevis egg RNase is a unique protein compared with RNases from not only amphibians, but also mammals. 相似文献
9.
T Kurumatani RF Cowburn N Bogdanovic B Winblad J Fastbom 《Canadian Metallurgical Quarterly》1997,104(2-3):175-189
Autoradiographic techniques were used to investigate the characteristics of tritiated inositol(1,4,5)trisphosphate ([3H]IP3) and inositol (1,3,4,5) tetrakisphosphate ([3H]IP4) binding to human brain. In brain sections [3H]IP3 exhibited a two-site binding with KD values of 87 nM and 9.3 microM respectively for the higher and lower affinity sites. [3H]IP4 also bound to two sites with KD values of 43 nM and 1.4 microM, respectively. With the conditions fixed in this study, [3H]IP3 and [3H]IP4 autoradiography in the cortex, caudate, hippocampus and cerebellum were performed. The most prominent [3H]IP3 binding among these regions was found in the cerebellum, particularly in the molecular layer. Within the hippocampus, the subiculum and the CA1 region showed much more prominent binding than the other subfields. [3H]IP4, binding was fairly homogeneous in the regions studied, with the exception of a slightly higher binding in the molecular layer of the cerebellum. 相似文献
10.
O A?ikg?z S G?nen? BM Kayatekin N Uysal C Pek?etin I Semin A Güre 《Canadian Metallurgical Quarterly》1998,813(1):200-202
The administration of methamphetamine to experimental animals results in damage to nigrostriatal dopaminergic neurons. In the present study, we demonstrated that both the acute repeated and the chronic administration of methamphetamine causes an increase in thiobarbituric acid reactive substances, which are indicators of lipid peroxidation, and superoxide dismutase activity in the rat striatum. The results of present study strengthen the notion that reactive oxygen species may play an important role in the methamphetamine-induced neurotoxicity. 相似文献
11.
12.
V Luzzi CE Sims JS Soughayer NL Allbritton 《Canadian Metallurgical Quarterly》1998,273(44):28657-28662
To measure the concentration of inositol 1,4,5-trisphosphate ([IP3]) in small regions of single Xenopus oocytes, a biological detector cell was combined with capillary electrophoresis. This method is 10, 000 times more sensitive than all existing assays enabling subcellular measurement of [IP3] in Xenopus oocytes. Upon addition of lysophosphatidic acid to an oocyte, [IP3] increased from 40 to 650 nM within 2 min. IP3 concentrations as high as 1.8 microM were measured after activation with lysophosphatidic acid, suggesting that the physiologic concentration of IP3 ranges from the tens of nanomolar to a few micromolar in Xenopus oocytes. Since the IP3 receptor in Xenopus oocytes is nearly identical to the type I receptor of mammalian cells, the range of [IP3] in most mammalian cells is likely to be similar to that in the oocyte. By selecting or engineering the appropriate detector cell, this strategy should be applicable to cyclic adenosine diphosphate ribose and nicotinic acid adenine dinucleotide phosphate, and to the discovery of new Ca2+-releasing second messengers. 相似文献
13.
While known to be a potent activator of phosphoinositidase C, angiotensin II (A-II) also causes a small but significant increase in cAMP production through the type 1 A-II (AT1) receptor in bovine adrenocortical cells (Mol Cell Endocrinol 81:33-41, 1991). We have carried out studies on primary cultures of fetal bovine adrenocortical cells to examine the effects of A-II on the expression of cytochrome P450 17 alpha-hydroxylase (P450c17), which is known to be regulated in a cAMP-dependent fashion. Prolonged treatment (48 h) of cells with A-II (10(-7) M) did not give rise to a detectable increase in P450c17 as measured by immunoblotting, although both A-II and the protein kinase C activator, 12-O-tetradecanoylphorbol 13-acetate (TPA) attenuated the large increase in P450c17 induced by ACTH (10(-8) M). A-II alone (10(-7) M) however, caused a time-dependent increase in cAMP secretion, reaching 8-fold within 3 h. Prolonged treatment of cells with A-II also resulted in a 3-fold increase in P450c17 mRNA within 12 h (10(-7) M), and a dose-dependent increase in 17 alpha-hydroxylase activity within 48 h (16.4-fold max at 10(-7) M). The stimulatory actions of A-II alone (10(-7) M) on cAMP levels, P450c17 mRNA, and 17 alpha-hydroxylase activity were much smaller than in response to ACTH (10(-8) M), but were largely reproduced by TPA (10(-7) M), suggesting a role for protein kinase C in mediating these responses to A-II. These findings indirectly support the hypothesis that A-II alone can stimulate an increase in cAMP in adrenocortical cells. Such a stimulation of cAMP may then result in increased expression of steroidogenic enzymes, as we have shown is the case for P450c17 expression. However, A-II in the presence of ACTH appears to attenuate the ACTH-stimulated expression of P450c17. 相似文献
14.
In the preceding paper Fontanilla and Nuccitelli (Biophysical Journal 75:2079-2087 (1998)) present detailed measurements of the shape and speed of the fertilization Ca2+ wave in Xenopus laevis eggs. In order to help interpret their results, we develop here a computational technique based on the finite element method that allows us to carry out realistic simulations of the fertilization wave. Our simulations support the hypothesis that the physiological state of the mature egg is bistable, i.e., that its cytoplasm can accommodate two alternative physiological Ca2+ concentrations: a low concentration characteristic of the prefertilization state and a greatly elevated concentration characteristic of the state following the passage of the wave. We explore this hypothesis by assuming that the bistability is due to the release and re-uptake properties of the endoplasmic reticulum (ER) as determined by inositol trisphosphate (IP3) receptor/Ca2+ channels and sarcoendoplasmic reticulum calcium ATPase (SERCA) pumps. When combined with buffered diffusion of Ca2+ in the cytoplasm, our simulations show that inhomogeneities in the Ca2+ release properties near the plasma membrane are required to explain the temporal and spatial dependences of the shape and speed of these waves. Our results are consistent with an elevated IP3 concentration near the plasma membrane in the unfertilized egg that is augmented significantly near the site of fertilization. These gradients are essential in determining the concave shape of the Ca2+ fertilization wave front. 相似文献
15.
Three types of ribosomal preparations from Xenopus laevis eggs and embryos were tested in a cell-free system to study possible translational regulation of protein synthesis as mediated by the ribosome during early amphibian development: type 1, a crude high-speed sediment, mainly containing monoribosomes completely dissociable by 0.5 M KC1; type II, ribosomes washed with 0.5 M KC1; and type III, ribosomes treated with puromycin - 0.5 M KC1. All three types showed an active response to the addition of poly[U]. Type III was found to be the most active: levels of incorporation of 30 phenylalanine residues/ribosome were reached. In all three cases ribosomes prepared from unfertilized eggs were 30-40% less active in vitro than those from cleavage and gastrula stages. 相似文献
16.
17.
Synthetic peptides corresponding to the effector domain of the small molecular weight GTP-binding protein Rab3A are known to stimulate exocytosis in various secretory cells. In the present study, we report that Rab3A effector domain peptide (33-48) causes accumulation of inositol 1,4,5-trisphosphate (1,4,5-IP3) in permeabilized pancreatic acinar cells, hepatocytes, 3T3 fibroblasts, and SH-SY5Y neuroblastoma cells. A scrambled peptide of Rab3A had no effect showing specificity of the Rab3A peptide response. No effect was observed in intact cells indicating that the target of the peptide is located intracellularly. We conclude that Rab3 effector domain peptide-induced accumulation of 1,4,5-IP3 is a wide-spread phenomenon, suggesting regulation of phosphoinositide-specific phospholipase C by Rab3-like proteins. 相似文献
18.
GM Thomas E Cunningham A Fensome A Ball NF Totty O Truong JJ Hsuan S Cockcroft 《Canadian Metallurgical Quarterly》1993,74(5):919-928
Transmembrane signaling by the phospholipase C-beta (PLC-beta) pathway is known to require at least three components: the receptor, the G protein, and the PLC. Recent studies have indicated that if the cytosol is allowed to leak out of HL60 cells, then G protein-stimulated PLC activity is greatly diminished, indicating an essential role for a cytosolic component(s). We now report the complete purification of one component based on its ability to reconstitute GTP gamma S-mediated PLC activity and identify it as the phosphatidylinositol transfer protein (PI-TP). Based on the in vitro effects of PI-TP, we surmise that it is involved in transporting PI from intracellular compartments for conversion to PI bisphosphate (PIP2) prior to hydrolysis by PLC-beta 2/PLC-beta 3, the endogenous PLC isoforms present in these cells. 相似文献
19.
Sulfhydryl reagents such as tert-butyl hydroperoxide (TBHP) have been shown to increase cytosolic Ca2+ concentration ([Ca2+]i) in rat hepatocytes in a way that resembles responses to Ca(2+)-mobilizing hormones (Saikada, I., Thomas, A. P., and Farber, J. L. (1991) J. Biol. Chem. 266, 717-722; Rooney, T. A., Renard, D. C., Sass, E. J., and Thomas, A. P. (1991) J. Biol. Chem. 266, 12272-12282) and to increase the amount of Ca2+ released by inositol 1,4,5-trisphosphate ((1,4,5)IP3) from permeable rat liver cells (Rooney et al., 1991, op. cit.; Missiaen, L., Taylor, C. W., and Berridge, M. J. (1991) Nature 352, 241-244; Renard, D. C., Seitz, M. B., and Thomas, A. P. (1992) Biochem. J. 284, 507-512). The effects of sulfhydryl reagents were studied in fura-2-injected rat and guinea pig hepatocytes and compared with the actions of cAMP (Burgess, G. M., Bird, G. St. J., Obie, J. F., and Putney, J. W., Jr. (1991) J. Biol. Chem. 261, 4772-4781). In rat liver cells, the increases in [Ca2+]i induced by TBHP and thimerosal were prevented by microinjection of the cells with the (1,4,5)IP3 receptor antagonist heparin. In guinea pig hepatocytes, TBHP was not able to increase [Ca2+]i unless the cells were pretreated with angiotensin II to raise endogenous levels of (1,4,5)IP3 or were first injected with a sub-threshold concentration of inositol 2,4,5-trisphosphate ((2,4,5)IP3). The responses to TBHP in (2,4,5)IP3-injected guinea pig cells were also blocked by heparin. In many respects, the actions of TBHP appeared to be similar to those of cAMP, which has previously been shown to increase sensitivity to (1,4,5)IP3 in intact guinea pig hepatocytes (Burgess et al., 1991, op. cit.). TBHP also mimicked the effect of cAMP-dependent kinase (PKA) in permeabilized guinea pig hepatocytes by increasing the amount of Ca2+ released by (1,4,5)IP3. The responses to TBHP and cAMP in (2,4,5)IP3-injected guinea pig hepatocytes differed, however, in that the increase in [Ca2+]i evoked by elevating intracellular cAMP was greatly reduced by Wiptide, an inhibitor of PKA, while Wiptide had no effect on the Ca2+ transients induced by TBHP. This provides evidence that the sensitizing effect of TBHP is not mediated by PKA and is more likely to be a direct effect on the inositol trisphosphate receptor. It is possible, however, that the sulfhydryl reagents and PKA act on a common regulatory site on the receptor protein. 相似文献