共查询到18条相似文献,搜索用时 81 毫秒
1.
将人工蜂群(ABC)算法应用到中长期电力负荷预测中,通过与组合预测模型相结合,对组合预测目标函数进行优化权重求解。另外针对该算法的早期收敛速度慢、后期容易陷入局部最优的缺点,通过引入扰动项,并进行最坏蜜源替代予以解决。实例分析证明该改进算法收敛速度快,全局寻优能力强。利用它求得的组合预测值,相对于单一模型的预测结果,精度有较大的提高,说明该改进算法应用到中长期电力负荷预测中是可行的。 相似文献
2.
3.
电力负荷数据具备时序性和非线性特征,长短时记忆神经网络(LSTM,long short-term memory)可以有效处理上述数据特性。然而LSTM算法性能对预置参数具有极大的依赖性,依靠经验设定的参数会使模型具有较低的泛化性能,降低了预测效果。为解决上述问题,提出非线性动态调整惯性权重粒子群算法(NIWPSO,nonlinear dynamic inertia weight strategy particle swarm optimization)与LSTM相结合的预测模型NIWPSO-LSTM。利用非线性动态调整惯性权重的方法来提升PSO的全局寻优能力,再通过NIWPSO对LSTM的参数进行优化。实验结果表明,NIWPSO-LSTM预测精度要远高于其他模型,验证了所提方案的可行性。 相似文献
4.
针对GM(1,1)模型的局限性及在负荷预测中存在的问题,提出了一种基于粒子群优化的灰色模型.粒子群算法是一种新的全局优化算法,有很强的全局寻优能力,用它来优化灰色模型的背景值及初始值修正值,能较好地提高电力系统中长期负荷预测的精度.在虚拟仪器LabVIEW平台上进行仿真,验证了所提方法的有效性. 相似文献
5.
标么值加权平均组合变量生成法用于中长期电力负荷预测 总被引:1,自引:0,他引:1
张筱慧 《电力系统保护与控制》2009,37(12)
将标么值概念引入电力负荷预测,将预测中使用的部分自变量做标准化处理,可以消除变量取值单位对回归系数的影响,同时寻找变量间及变量在不同地区间的相似性.利用变量的加权线性组合生成新变量,利用相似性对一些变量的发展规律作出估计,使偏最小二乘回归方法能够应用于我国农村电网. 相似文献
6.
张筱慧 《电力系统保护与控制》2009,37(12):40-43
将标么值概念引入电力负荷预测,将预测中使用的部分自变量做标准化处理,可以消除变量取值单位对回归系数的影响,同时寻找变量间及变量在不同地区间的相似性。利用变量的加权线性组合生成新变量,利用相似性对一些变量的发展规律作出估计,使偏最小二乘回归方法能够应用于我国农村电网。 相似文献
8.
自适应粒子群优化灰色模型的负荷预测 总被引:1,自引:0,他引:1
针对传统灰色预测模型GM(1,1)在预测增长较快的电力负荷时预测效果变差这一局限性,引入了比标准粒子群优化算法效率更高的自适应粒子群优化算法,并与GM(1,1)模型相结合,利用自适应粒子群算法求解GM(1,1)模型中的参数a和u,提出一种自适应粒子群优化灰色模型.通过对四个地区的用电量进行实例仿真,证明该模型具有较广的适用范围和较高的预测精度. 相似文献
9.
支持向量机(SVM)已经成功地应用于解决非线性回归和时间序列问题,并且已经开始用于中长期负荷预测。提出了一种基于鲁棒支持向量回归机RSVR(Robust Support Vector Regression)的中长期负荷预测的新方法。给出利用粒子群优化算法对鲁棒支持向量机系数优化选择的方法。建立基于此原理的中长期负荷预测模型,算例分析比较验证本文方法具有预测精度高、计算量小等特点和优势。 相似文献
10.
持向量机(SVM)已经成功地应用于解决非线性回归和时间序列问题,并且已经开始用于中长期负荷预测.提出了一种基于鲁棒支持向量回归机RSVR(Robust Support Vector Regression)的中长期负荷预测的新方法.给出利用粒子群优化算法对鲁棒支持向量机系数优化选择的方法.建立基于此原理的中长期负荷预测模型,算例分析比较验证本文方法具有预测精度高、计算量小等特点和优势. 相似文献
11.
12.
基于粒子群模糊神经网络的短期电力负荷预测 总被引:3,自引:0,他引:3
为了从根本上提高短期电力负荷预测中神经网络的速度和预测精度,提出了将粒子群算法和BP算法相结合的短期负荷预测方法。用粒子群算法来训练网络参数,直到误差趋于一稳定值,然后用优化的权值进行BP算法,实现短期负荷预测。在构建网络模型时,考虑了气候、温度等因素的影响,并把它们进行模糊化处理后作为网络的输入。仿真结果表明基于这一方法的负荷预测系统具有较高的精度和实时性。 相似文献
13.
基于主成分与粒子群算法的LS-SVM短期负荷预测 总被引:1,自引:0,他引:1
短期电力负荷预测对电力系统安全经济运行和国民经济发展具有重要意义.最小二乘支持向量机(Least square support vector machines,LS-SVM)在解决小样本、非线性问题中表现出许多特有的优势,该方法已成功应用在负荷预测领域.本文提出了一种基于主成分分析的支持向量机预测模型,运用主成分分析对历史数据进行主成分提取,消除输入的训练数据本身存在着大量的噪声和冗余,从处理后的数据提取LSSVM的训练样本,并利用改进的粒子群优化算法(Particle Swarm Optimization,PSO)以LSSVM中的参数作为粒子进行优化,进而提高训练速度和预测精度.最后,将该模型运用到短期电力负荷预测中,与经典的SVM和BP神经网络相比具有更好的泛化性能和预测精度. 相似文献
14.
基于免疫粒子群算法的电力系统无功优化 总被引:1,自引:2,他引:1
为提高粒子群优化(particle swarm optimization,PSO)算法的收敛性能,将免疫算法(immunity algorithms,IA)的免疫信息处理机制引入到标准粒子群算法,形成一种新的优化算法,即免疫粒子群算法。该算法将免疫算法的免疫记忆和自我调节机制引入PSO,并采用基于粒子浓度机制的多样性保持策略;同时,用免疫算法的"接种疫苗"和"免疫选择"来指导搜索过程。改进后的算法可以很好的保持优化过程中粒子群的多样性,抑制优化过程中出现的退化现象,保证算法的收敛精度和收敛速度。IEEE 30节点系统算例仿真表明,IA-PSO算法与标准PSO算法相比,能够及时跳出局部最优得到全局最优解,且收敛速度快、精度高。 相似文献
15.
基于多目标粒子群优化算法的短期电力负荷预测法 总被引:3,自引:1,他引:3
针对短期负荷预测的特点,提出一种基于多目标粒子群优化算法的短期电力负荷预测法。该算法充分利用了历史数据集的基本知识,利用多目标粒子群优化算法挑选出Pareto最优模式分类规则集,在考虑规则的分类准确性和可解释性的情况下,建立一个基于模糊规则的电力负荷模式分类系统。在仿真试验表明此分类系统具有较好的分类性能,可为电力负荷预测提供更为充分有效的历史数据,从而改善其负荷预测性能。 相似文献
16.
通过对dt^-dx^(1)+ax^(1)=u的通解x^^(1)=ce^-ak+a^-u的参数a、u、c直接求解,避免了灰微分方程参数辨识时选取合理背景值的问题,构建了适应性更强的不需构造GM(1,1)模型的背詈值而直接求解灰微分方程参数的模型,并且在求解这些参数的过程中,应用了在求解非线性问题中具有全局寻优能力的粒子群算法(PSO)。提出了基于粒子群算法优化的电力负荷灰色预测模型PSOGM(1,1,a,u,c),通过在电力负荷实例中的应用并与传统的GM(1,1)预测模型进行了效果比较,验证了基于粒子群算法优化的电力负荷GM(1,1)模型具有很好的预测精度和适用性。 相似文献
17.
18.
由于电力负荷内在的非线性特性,传统基于梯度搜索的参数辨识技术可能陷入局部最优,影响了预测精度,故提出了混合进化和粒子群优化算法。将进化算法的基本思想引入粒子群优化算法,不但保持了粒子群算法结构简单、易于实现的特点,而且充分发挥了进化算法的全局搜索能力,可有效提高算法的精度和收敛速度。对上海地区电网进行短期负荷预测,与实际值相比较,结果表明,该算法具有较高的预测精度,是一种有效的短期预测方法。 相似文献