首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
软件缺陷预测已成为软件工程的重要研究课题,构造了一个基于粗糙集和支持向量机的软件缺陷预测模型。该模型通过粗糙集对原样本集进行属性约减,去掉冗余的和与缺陷预测无关的属性,利用粒子群对支持向量机的参数做选择。实验数据来源于NASA公共数据集,通过属性约减,特征属性由21个约减为5个。实验表明,属性约减后,Bayes分类器、CART树、神经网络和本文提出的粗糙集—支持向量机模型的预测性能均有所提高,本文提出的粗糙集支持向量机的预测性能好于其他三个模型。  相似文献   

2.
软件缺陷预测是典型的非平衡学习问题。基于CS SVM和聚类算法改进代价敏感支持向量机(SVM)算法,提出了CCS SVM软件缺陷预测模型。在CCS SVM预测模型中,将SVM与类别误分代价结合起来,以非平衡数据评价指标作为目标函数,优化错分代价因子,提升少数类样本的识别率。通过聚类找到每类样本的中心点,根据样本到其中心点的距离定义每个样本的类别置信度,给每个样本分配不同的误分代价系数,并把样本的置信度引入到代价敏感SVM优化问题中,提高算法鲁棒性,提升SVM分类性能。此外,为了提高模型的泛化能力,使用遗传算法优化特征选择和模型参数。通过美国航空航天局NASA MDP数据集实验表明,本文方法的G mean和F measure模型评价值有明显的提升。  相似文献   

3.
软件缺陷预测有助于提高软件开发质量,保证测试资源有效分配。针对软件缺陷预测研究中类标签数据难以获取和类不平衡分布问题,提出基于采样的半监督支持向量机预测模型。该模型采用无监督的采样技术,确保带标签样本数据中缺陷样本数量不会过低,使用半监督支持向量机方法,在少量带标签样本数据基础上利用无标签数据信息构建预测模型;使用公开的NASA软件缺陷预测数据集进行仿真实验。实验结果表明提出的方法与现有半监督方法相比,在综合评价指标[F]值和召回率上均优于现有方法;与有监督方法相比,能在学习样本较少的情况下取得相当的预测性能。  相似文献   

4.
闫昀泽 《软件》2024,(4):184-186
随着软件在各行业的广泛应用,对软件缺陷快速而准确的分类变得愈发关键。本文基于支持向量机(SVM)算法,提出了一种新的改进算法,强调提高处理效率和降低对噪声的敏感性,并通过对比分析实验结果,验证了改进算法相对于传统算法的性能优势。本文的研究结果能够为软件工程领域提供更先进、可靠的软件缺陷分类方法,为确保软件质量和可维护性提供有力支持。  相似文献   

5.
如何有效利用海量的数据是当前机器学习面临的一个重要任务,传统的支持向量机是一种有监督的学习方法,需要大量有标记的样本进行训练,然而有标记样本的数量是十分有限的并且非常不易获取.结合Co-training算法与Tri-training算法的思想,给出了一种半监督SVM分类方法.该方法采用两个不同参数的SVM分类器对无标记样本进行标记,选取置信度高的样本加入到已标记样本集中.理论分析和计算机仿真结果都表明,文中算法能有效利用大量的无标记样本,并且无标记样本的加入能有效提高分类的正确率.  相似文献   

6.
7.
针对股票预测的特点,选择对上市公司股票走势有重要影响的相关数据进行测试。为了避免传统的预测算法(如BP算法)的一些弊端,使用可以避免这些弊端并且具有良好分类功能的支持向量机对该上市公司股票走势进行预测。测试表明预测的精度明显高于采用BP算法等传统神经网络分类方法的测试结果,预测达到了让人满意的效果。  相似文献   

8.
基于支持向量机的股票预测   总被引:3,自引:1,他引:3  
针对股票预测的特点,选择对上市公司股票走势有重要影响的相关数据进行测试。为了避免传统的预测算法(如BP算法)的一些弊端,使用可以避免这些弊端并且具有良好分类功能的支持向量机对该上市公司股票走势进行预测。测试表明预测的精度明显高于采用BP算法等传统神经网络分类方法的测试结果,预测达到了让人满意的效果。  相似文献   

9.
基于支持向量机的股市预测   总被引:2,自引:1,他引:2  
王彦峰  高风 《计算机仿真》2006,23(11):256-258,321
针对股票市场高燥声、强非线性和不确定性等特点和以往传统神经网络预测方法存在的不足,提出了一种基于支持向量机的股市预测方法。该方法主要运用了支持向量机回归的方法结合滚动时间窗来学习建摸。首先通过把低维输入空间的输入向量映射到高维特征空间,将非线性问题转化为线性,然后在结构风险最小化原则下进行二次规划,并求得最优解,从而建立模型。从仿真实验中可以看到,该方法建立的模型较为准确地预测了600009、000815两只股票的日均价,表现出了较强的泛化能力。  相似文献   

10.
针对支持向量机要求输入向量为已标记样本,而实际应用中已标记样本很难获取的问题,提出将半监督学习和支持向量机结合的煤与瓦斯突出预测方法;介绍了采用SVM预测煤与瓦斯突出的流程及其输入向量的选择;对半监督学习中的协同训练算法进行了改进:在同一属性集上训练2个不同分类器SVM和KNN,将2个分类器标记一致的样本加入训练集,从而充分利用未标记样本不断补充信息,更新训练集标记样本,达到强化训练集的目的。测试结果表明,改进后的算法比单独的支持向量机预测方法准确率更高。  相似文献   

11.
基于支持向量机的工程项目风险预测研究   总被引:3,自引:0,他引:3  
风险预测是工程项目风险管理的重要基础,本文在介绍支持向量机(SVM)基本原理的基础上,探讨了基于支持向量机的项目风险预测算法,根据以往同类工程项目的数据作为学习样本,来识别待研究项目的风险类别,从而做出项目风险水平的预测。本文同时也说明了Libsvm软件在项目风险预测方面的应用。  相似文献   

12.
软件可靠性评估是软件可靠性工程研究的一个重要方向。本文运用聚类思想对软件可靠性进行评估,在对软件可靠性因素进行编码的基础上,采用SVM(支持向量机)对其进行聚类研究,实现了软件可靠性的自动化评估。最后通过仿真测试,证明了此方法的有效性和可行性。  相似文献   

13.
基于支持向量机方法的车型分类   总被引:1,自引:0,他引:1  
车型分类是交通流检测系统的子功能,也是智能交通系统(ITS)中的重要环节。支持向量机方法被看作是对传统学习分类方法的一个好的替代,特别在小样本、非线性情况下,具有较好的泛化性能。论文基于视频检测技术,采用支持向量机方法对车型分类进行了研究。实验表明,支持向量机方法能获得比神经网络方法更好的车型分类性能。  相似文献   

14.
各种不同类型的支持向量机及其性能比较分析   总被引:5,自引:1,他引:4  
支持向量机(SVM)是由Vapnik等人提出的解决分类、线性回归问题的可行方法。在模式识别等问题中有广泛的应用,并在应用中衍生出了多种不同的形式。文章从统计学习理论入手,在讲述SVM一般原理的基础上,分析比较不同种的支持向量机的性能。由于分析从两个角度进行,所提出的方法能够涵盖,并区分绝大多数现有SVM。  相似文献   

15.
分类预测是数据挖掘、机器学习和模式识别等很多领域共同关注的问题,已经存在了许多有效的分类算法,但这些算法还不能解决所有的问题。支持向量机作为一种新的分类预测工具,能根据有限样本信息在模型的复杂性和学习能力间取得平衡,并能获得更好的泛化能力。SMO算法是支持向量机中使用最多的算法,它体现了支持向量机的优点,同时也能处理大规模训练集。  相似文献   

16.
该文是对当前支持向量机在文本分类上的应用进行研究。先介绍了支持向量机的基本方法.再通过对不同方法的支持向量札分类算法的比较,进行一个总体酌描述和概括开对未来发展发向做了一个预测。  相似文献   

17.
为缩小图像的低层特征与高层语义之间的语义鸿沟,基于支持向量机的相关反馈机制受到越来越广泛的关注,但这种方法并没有利用未标记样本的隐含信息.为更好地利用这些信息,提出将直推式支持向量机作为反馈过程中的学习算法.通过分析其所用特征向量的特点,设计一种颜色稀疏特征,并将其与纹理特征结合作为图像描述的特征.实验结果表明该方法较令人满意,同时也说明直推式支持向量机可在文本分类以外的领域取得较好结果.  相似文献   

18.
增量回归支持向量机改进学习算法   总被引:1,自引:0,他引:1  
传统的支持向量机不具有增量学习性能,而常用的增量学习方法具有不同的优缺点,为了解决这些问题,提高支持向量机的训练速度,文章分析了支持向量机的本质特征,根据支持向量机回归仅与支持向量有关的特点,提出了一种适合于支持向量机增量学习的算法(IRSVM),提高了支持向量机的训练速度和大样本学习的能力,而支持向量机的回归能力基本不受影响,取得了较好的效果。  相似文献   

19.
基于改进人工鱼群算法的支持向量机预测   总被引:1,自引:0,他引:1       下载免费PDF全文
由于参数的选择范围较大,在多个参数中进行盲目搜索最优参数的时间代价较大,且很难得到最优参数.为此,提出一种基于改进人工鱼群算法(AFSA)的支持向量机(SVM)预测算法.对AFSA进行改进,并使用改进算法优化SVM.实验结果表明,与遗传算法、粒子群优化算法和基本AFSA优化的支持向量机相比,该算法的均方误差降低为2.51×10-3,提高了预测精度.  相似文献   

20.
提出用支持向量机回归方法实现高速公路限速控制,这是一个非线性系统建模问题。阐述了支持向量机回归算法,根据高速公路车辆群状态、路面性能、气象条件等,建立交通流速度限制支持向量机回归模型。仿真实验表明,支持向量机回归对小样本具有训练速度快、泛化能力好等优点。支持向量机回归方法为交通流限速控制的在线建模提供了一种切实可行的新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号