首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 72 毫秒
1.
软件缺陷预测已成为软件工程的重要研究课题,构造了一个基于粗糙集和支持向量机的软件缺陷预测模型。该模型通过粗糙集对原样本集进行属性约减,去掉冗余的和与缺陷预测无关的属性,利用粒子群对支持向量机的参数做选择。实验数据来源于NASA公共数据集,通过属性约减,特征属性由21个约减为5个。实验表明,属性约减后,Bayes分类器、CART树、神经网络和本文提出的粗糙集—支持向量机模型的预测性能均有所提高,本文提出的粗糙集支持向量机的预测性能好于其他三个模型。  相似文献   

2.
软件缺陷预测是典型的非平衡学习问题。基于CS SVM和聚类算法改进代价敏感支持向量机(SVM)算法,提出了CCS SVM软件缺陷预测模型。在CCS SVM预测模型中,将SVM与类别误分代价结合起来,以非平衡数据评价指标作为目标函数,优化错分代价因子,提升少数类样本的识别率。通过聚类找到每类样本的中心点,根据样本到其中心点的距离定义每个样本的类别置信度,给每个样本分配不同的误分代价系数,并把样本的置信度引入到代价敏感SVM优化问题中,提高算法鲁棒性,提升SVM分类性能。此外,为了提高模型的泛化能力,使用遗传算法优化特征选择和模型参数。通过美国航空航天局NASA MDP数据集实验表明,本文方法的G mean和F measure模型评价值有明显的提升。  相似文献   

3.
软件缺陷预测有助于提高软件开发质量,保证测试资源有效分配。针对软件缺陷预测研究中类标签数据难以获取和类不平衡分布问题,提出基于采样的半监督支持向量机预测模型。该模型采用无监督的采样技术,确保带标签样本数据中缺陷样本数量不会过低,使用半监督支持向量机方法,在少量带标签样本数据基础上利用无标签数据信息构建预测模型;使用公开的NASA软件缺陷预测数据集进行仿真实验。实验结果表明提出的方法与现有半监督方法相比,在综合评价指标[F]值和召回率上均优于现有方法;与有监督方法相比,能在学习样本较少的情况下取得相当的预测性能。  相似文献   

4.
如何有效利用海量的数据是当前机器学习面临的一个重要任务,传统的支持向量机是一种有监督的学习方法,需要大量有标记的样本进行训练,然而有标记样本的数量是十分有限的并且非常不易获取.结合Co-training算法与Tri-training算法的思想,给出了一种半监督SVM分类方法.该方法采用两个不同参数的SVM分类器对无标记样本进行标记,选取置信度高的样本加入到已标记样本集中.理论分析和计算机仿真结果都表明,文中算法能有效利用大量的无标记样本,并且无标记样本的加入能有效提高分类的正确率.  相似文献   

5.
6.
针对股票预测的特点,选择对上市公司股票走势有重要影响的相关数据进行测试。为了避免传统的预测算法(如BP算法)的一些弊端,使用可以避免这些弊端并且具有良好分类功能的支持向量机对该上市公司股票走势进行预测。测试表明预测的精度明显高于采用BP算法等传统神经网络分类方法的测试结果,预测达到了让人满意的效果。  相似文献   

7.
基于支持向量机的股票预测   总被引:3,自引:1,他引:3  
针对股票预测的特点,选择对上市公司股票走势有重要影响的相关数据进行测试。为了避免传统的预测算法(如BP算法)的一些弊端,使用可以避免这些弊端并且具有良好分类功能的支持向量机对该上市公司股票走势进行预测。测试表明预测的精度明显高于采用BP算法等传统神经网络分类方法的测试结果,预测达到了让人满意的效果。  相似文献   

8.
基于支持向量机的股市预测   总被引:2,自引:1,他引:2  
王彦峰  高风 《计算机仿真》2006,23(11):256-258,321
针对股票市场高燥声、强非线性和不确定性等特点和以往传统神经网络预测方法存在的不足,提出了一种基于支持向量机的股市预测方法。该方法主要运用了支持向量机回归的方法结合滚动时间窗来学习建摸。首先通过把低维输入空间的输入向量映射到高维特征空间,将非线性问题转化为线性,然后在结构风险最小化原则下进行二次规划,并求得最优解,从而建立模型。从仿真实验中可以看到,该方法建立的模型较为准确地预测了600009、000815两只股票的日均价,表现出了较强的泛化能力。  相似文献   

9.
针对支持向量机要求输入向量为已标记样本,而实际应用中已标记样本很难获取的问题,提出将半监督学习和支持向量机结合的煤与瓦斯突出预测方法;介绍了采用SVM预测煤与瓦斯突出的流程及其输入向量的选择;对半监督学习中的协同训练算法进行了改进:在同一属性集上训练2个不同分类器SVM和KNN,将2个分类器标记一致的样本加入训练集,从而充分利用未标记样本不断补充信息,更新训练集标记样本,达到强化训练集的目的。测试结果表明,改进后的算法比单独的支持向量机预测方法准确率更高。  相似文献   

10.
提出一种基于支持向量机的渐近式半监督式学习算法,它以少量的有标记数据来训练初始学习器,通过选择性取样规则和核参数来调节无标记样本的选择范围和控制学习器决策面的动态调节方向,并通过删除非支持向量来降低学习代价。仿真实验表明,只要能够选择适当的选择性取样的阈值和核参数,这种学习算法就能够以较少的学习代价获得较好的学习效果。  相似文献   

11.
基于支持向量机的工程项目风险预测研究   总被引:3,自引:0,他引:3  
风险预测是工程项目风险管理的重要基础,本文在介绍支持向量机(SVM)基本原理的基础上,探讨了基于支持向量机的项目风险预测算法,根据以往同类工程项目的数据作为学习样本,来识别待研究项目的风险类别,从而做出项目风险水平的预测。本文同时也说明了Libsvm软件在项目风险预测方面的应用。  相似文献   

12.
陈家德  吴小俊 《计算机工程》2009,35(19):181-183
偏移量确定了支持向量机和模糊支持向量机(FSVM)的最优分类面位置,对分类性能具有较大影响。为提高模糊支持向量机的识别率,基于Fisher判别分析方法提出一种新的偏移量计算方法,将其用于FSVM多类分类器设计。对3种数据集的测试结果表明,使用新偏移量的FSVM识别率高于使用标准偏移量的FSVM识别率。  相似文献   

13.
基于模糊支持向量机的步态识别   总被引:2,自引:0,他引:2  
路远 《计算机工程》2009,35(21):189-191
提出基于模糊支持向量机(FSVM)的步态识别方法,以人体步态的宽度向量作为特征,探讨直接取值法和模糊C均值2种模糊隶属度确定方法对FSVM步态分类效果的影响。实验结果表明,模糊C均值法的识别率均略好于SVM,直接取值法的识别率甚至低于SVM,因此,选取正确的模糊隶属度确定方法是FSVM能否成功应用于步态识别的关键。  相似文献   

14.
线性支持向量机的无约束优化模型的目标函数不是一个二阶可微函数,因此不能应用一些快速牛顿算法来求解。提出了目标函数的一种光滑化技巧,从而得到了相应的光滑线性支持向量机模型,并给出了求解该光滑线性支持向量机模型的Newton-Armijo算法,该算法是全局收敛的和二次收敛的。  相似文献   

15.
改进的在线支持向量机训练算法   总被引:2,自引:1,他引:2       下载免费PDF全文
潘以桢  胡越明 《计算机工程》2009,35(22):212-215
传统支持向量机基于批量训练方法,无法适应环境污染预测中的海量数据与实时性要求。在分析研究一种典型的在线支持向量机回归算法[4]的基础上,指出原算法在训练过程中存在样本重复移动问题,导致模型训练速度下降。提出一种改进算法,消除重复移动问题。实验结果表明,该改进在线支持向量机算法建模精度高,训练速度较原算法有显著提高。  相似文献   

16.
软件可靠性评估是软件可靠性工程研究的一个重要方向。本文运用聚类思想对软件可靠性进行评估,在对软件可靠性因素进行编码的基础上,采用SVM(支持向量机)对其进行聚类研究,实现了软件可靠性的自动化评估。最后通过仿真测试,证明了此方法的有效性和可行性。  相似文献   

17.
半监督软件缺陷挖掘研究综述   总被引:3,自引:0,他引:3  
软件质量是计算机系统安全可靠运行的保障,而软件缺陷是导致软件质量低下的重要诱因。软件缺陷挖掘技术凭借其能够通过对软件代码及其相关数据进行分析建模,发现软件系统潜在的缺陷,已得到了软件质量保障领域的广泛关注。要准确发现软件模块中潜在的缺陷,需要利用大量带有缺陷情况标注的模块进行学习。然而,缺陷情况标注往往需要通过详细测试或人工代码检查获取,要消耗大量测试和人工资源,在实际应用中难以满足,这严重制约了软件缺陷挖掘的性能。针对这一问题,半监督学习技术被引入软件 缺陷挖掘,通过对大量缺少标注的模块进行利用,辅助提升软件缺陷挖掘的性能。本文对半监督缺陷挖掘技术的研究现状进行综述。首先综述了软件缺陷挖掘研究现状,然后简要介绍了半监督学习的4种学习范式;最后系统梳理了基于半监督学习进行软件缺陷挖掘的多种方法与技术。  相似文献   

18.
解决说话人识别问题具有重要的理论价值和深远的实用意义,本文在研究支持向量机理论的基础上,采用支持向量机的分类算法实现说话人识别系统的训练和测试,并将小波去噪技术应用于说话人识别的预处理过程中,改善进入说话人识别系统的语音质量。实验表明,在说话人识别系统中,支持向量机结合小波去噪可以获得较好的识别率。  相似文献   

19.
一种改进的主动支持向量机算法及其应用   总被引:1,自引:1,他引:0       下载免费PDF全文
针对支持向量机中分类器易受样本孤立点影响的问题,提出一种改进的主动支持向量机算法,采用K—means算法获取少量“代表性”样本作为训练样本,通过训练该标识样本得到一个初始分类器,利用主动学习策略选择最佳未标记样本进行类别标记,并加入训练样本集重新训练分类器,重复该过程直到满足某些要求。运用Iris数据和遥感数据对其进行测试,实验结果表明,该算法是有效的。  相似文献   

20.
通过对自然文本统计模型和特性的分析,指出隐藏消息后可能对文本统计特性带来的变化,提出基子支持向量机的通用检测算法。将文本的5个基本统计特征量作为分类特征向量,采用支持向量机对自然文本和载密文本进行有效分类检测。实验结果证明,该算法具有较好的适用性和可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号