首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
根据锻造操作机钳口结构特点,将钳口夹持过程分为使锻件产生塑性变形挤压痕的夹紧状态和钳口承受锻件重力及重力矩并执行操作动作的夹持状态,并进行钳口夹持力理论分析。研究结果表明,影响夹持力大小的是夹紧状态的挤压作用,确定锻造操作机夹持力应以夹紧状态的作用力为依据。并以此为基础,分析了影响钳口夹紧力的因素,为优化钳口结构提供了条件。  相似文献   

2.
分析了钳口凸齿对锻造操作机夹持力的影响,结果表明表面带凸齿的钳口夹持工件时比平钳口夹持工件更为省力和有效。通过对热工件受挤压时变形情况的分析,确定了热工件的屈服应力;对钳口夹紧工件时的工况进行模型简化和受力分析,得出了钳口表面带凸齿的锻造操作机夹持力计算方法;对300,400和800 kN锻造操作机进行了实例计算,计算结果证明了计算方法的有效性。  相似文献   

3.
针对锻造操作机钳口与工件接触面摩擦因数确定困难和缺乏理论研究的问题,依据温度对摩擦因数的影响,分析了操作机夹持工件过程中钳口与工件接触面摩擦因数随温度变化的规律,明确了操作机夹持工件过程的最小摩擦因数,确定了钳口与工件接触表面采用凸齿结构的作用和必要性。结合锻造操作机钳口与工件的接触特点,分析了钳口凸齿与工件的挤压工况,研究了钳口凸齿结构对摩擦阻力的影响,并确定了当量摩擦因数,明确了凸齿结构参数与当量摩擦因数的内在关系,为合理确定钳口与工件接触面摩擦因数和钳口夹持力提供了条件。  相似文献   

4.
钳口是锻造操作机夹持机构中与工件直接接触的元件,其结构决定着操作机夹持力的确定。针对锻造操作机钳口的夹持力分析模型,提出钳口与工件摩擦因数、钳口长度和钳口夹持销轴中心距是确定夹持力的关键因素。根据钳口夹持特点,实验研究"冷"钳口与"热"工件之间摩擦因数的变化规律,分析了钳口与工件接触面摩擦因数的取值范围;研究被夹持工件的类型和结构特点,确定了钳口长度的设计原则;分析了被夹持最小工件直径对操作机设计和应用的影响,研究了被夹持最小工件直径的确定方法;明确基于钳口满足强度条件下质量最轻来进行优化设计并确定钳口夹持销轴中心距的研究思路,为锻造操作机钳口结构设计提供了有效支撑。  相似文献   

5.
锻造生产条件复杂,操作机夹持界面的接触状态容易发生改变,继而影响到钳口夹持稳定性。本文通过有限元数值模拟方法,对锻造操作机夹持界面的静态力学特性进行了研究。重点讨论了锻件不圆度、夹持界面摩擦系数、钳口角度、锻件大小等系列参数对接触压力分布和接触力大小的影响,为解决夹持稳定性问题提供参考依据。  相似文献   

6.
针对被夹持锻件的典型类型,分析了锻造操作机夹持机构的性能要求,明确了夹持机构近恒力输出的必要性。根据锻造操作机夹持机构的结构特点,分析了夹持机构的传力比,确定了影响夹持机构传力比的关键因素,研究了夹持机构结构参数的确定思路。以锻造操作机夹持机构的最大回转半径为依据,结合夹持机构的结构参数,提出了一种能够实现近恒力输出的操作机夹持机构传力比的确定方法,为操作机近恒力输出夹持机构传力比的确定提供理论依据。以300 kN操作机夹持机构为例,验证了研究思路的可行性,并分析了提升夹持机构夹持性能的思路,为近恒力输出夹持机构的设计提供了参考。  相似文献   

7.
介绍了大型锻造操作机的钳口夹紧力的计算方法。以保证钳口夹紧力要求条件下夹紧缸作用力最小为优化目标,建立了夹紧机构优化设计的数学模型,采用遗传算法对钳口夹紧机构参数进行了优化设计。分析结果表明,优化后油缸推力比原来降低了22.8%。  相似文献   

8.
确定锻造操作机钳口夹紧力是设计操作机的关键问题之一。作者推荐一种确定夹紧力的公式:P_(夹1)+P_(夹_2)=(?)  相似文献   

9.
分析了重型锻造操作机主要技术特点,建立了典型重载锻造操作机三维结构模型,给出了其结构和运动自由度的一般描述.针对所设计的夹持装置模型,建立了静态平衡条件下接触力旋量模型和抓取矩阵,分析了沿轴向外载荷和重力矩作用下发生滑动的条件及所需的最小夹紧力.对夹钳机构设计的运动学性能作了评价,分析了夹持力、驱动力与机构运动学参数之间的关系,给出了在取值区间的变化规律和取值范围.  相似文献   

10.
随着社会主义工业的迅速发展,操作机在我国锻造生产中的应用已日益广泛。为适应我国锻造生产的特点,进一步改革操作机,扩大其通用性、灵活性,改善劳动条件,已成为锻造行业技术改造中的一项任务。我厂过去采用的操作机的钳头结构,同国内现有的操作机一样,是单钳口的。实践证明,这种结构在使用上有很大的局限性,如打轴类锻件的钳口就不  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号