首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
AZ91D压铸镁合金微弧氧化膜层的显微硬度分析   总被引:3,自引:0,他引:3  
为了研究压铸镁合金AZ91D微弧氧化膜层显微硬度,在三种溶液及不同电参数条件下制备了微弧氧化膜层,分析了脉冲频率、占空比、电压、溶液成分及其电导率等参数对膜层显微硬度的影响.试验结果表明,镁合金微弧氧化处理可使其表面硬度大幅提高.锆盐溶液处理膜层的显微硬度高,与膜层相组成中含有ZrO2陶瓷有关.电源脉冲频率、占空比、电压、处理时间参数的增加,都使镁合金微弧氧化膜层的显微硬度增加.在一定范围内增加溶液的电导率,可使膜层的显微硬度提高.  相似文献   

2.
为了探讨脉冲电流参量对AZ31B镁合金微弧氧化过程的影响规律,利用涡流测厚仪测量陶瓷层厚度,采用扫描电镜观察陶瓷层表面形貌,根据电压变化曲线计算微弧氧化过程能量消耗。结果表明,随脉冲频率由500 Hz增至2000 Hz,镁合金微弧等离子体诱发时间由87 s减小至12 s,微弧等离子体诱发电压先降低后趋于稳定并在脉冲频率为1500 Hz时达到最低值177 V;陶瓷层表面放电微孔直径变大,数量减少,陶瓷层厚度增大同时膜层致密性变差;镁合金微弧等离子体诱发过程的能量消耗随脉冲频率增大先降低后升高,并在脉冲频率1500 Hz时达到最小值2.2 k J;陶瓷层生长过程能量消耗随脉冲频率增大呈线性增加,生长单位厚度陶瓷层的能量消耗也增多,脉冲频率500 Hz时达到最小值22.3 k J/μm。  相似文献   

3.
采用自行研制的大功率微弧氧化电源在频率700 Hz、占空比20%的条件下进行微弧氧化实验:并测量陶瓷膜层的厚度,观察膜层微观形貌,通过盐雾试验来评定陶瓷膜层的耐蚀性.研究发现:随过电压的升高,镁合金微弧氧化膜层厚度增加,表面熔融物颗粒增大,膜层表面变粗糙,陶瓷层的耐蚀性呈先增加后降低的趋势;并且陶瓷膜层耐蚀性在过电压为100~150 V时较好,因此镁合金微弧氧化要选择适当的过电压.  相似文献   

4.
电压增幅对镁合金微弧氧化膜层性能的影响   总被引:3,自引:0,他引:3  
研究了硅酸盐体系微弧氧化过程中,电源电压增幅对放电火花形态及AZ91D镁合金膜层的厚度、表面形貌和耐蚀性有影响。结果表明,随着脉冲电压增加,电弧的弧斑亮度增强、尺寸变大,但数目减少,大弧倾向增加;微弧氧化膜层的厚度增厚,但成膜速率降低;膜层表面熔融物颗粒增大,表面孔径增加,粗糙度增加;腐蚀率呈现出先减小后增加的趋势。当电压增幅为100~150 V时,其过程稳定性、成膜速率、膜层外观质量和耐蚀性等方面的综合性能相对最优。  相似文献   

5.
在含有丙三醇的硅酸盐体系中,通过微弧氧化法在AZ31B镁合金表面获得了细致均匀微孔的氧化膜。以SEM、电化学工作站和测厚仪为表征手段,利用单因素法分别考察了恒压模式下电压、频率、占空比对氧化膜结构、耐蚀性及厚度的影响。结果表明:随电压的增加,氧化膜的表面微孔尺寸和厚度均增大,但膜层耐蚀性能先增加后降低;随频率的增加,膜表面微孔尺寸减小,耐蚀性能增大,但频率改变对膜层的厚度影响较小;当占空比>45%时,膜层的表面微孔尺寸及厚度有增大趋势,膜层表面出现击穿破坏而导致耐蚀性能降低。优化的电参数为:电压230~260 V,频率300~500 Hz,占空比30%~45%。  相似文献   

6.
采用正交试验法,对影响7075铝合金微弧氧化膜层致密性的电参数进行优化。以膜层厚度和孔隙率作为指标,以正向电压、电流密度、正占空比和脉冲频率作为因素设计,并开展了四因素三水平的正交试验。使用扫描电镜对正交试验后微弧氧化陶瓷膜层的表面形貌进行了观察;利用Image J软件对陶瓷膜层的膜层厚度及孔隙率进行测量。结果表明:影响微弧氧化陶瓷膜层厚度的电参数顺序从大到小依次为:正向电压电流密度正占空比脉冲频率,影响微弧氧化膜层孔隙率的电参数顺序从大到小依次为:正向电压电流密度正占空比脉冲频率;采用综合平衡法确定的电参数的优化结果为:正向电压550 V、电流密度8 A/dm~2、正占空比20%、频率400 Hz。  相似文献   

7.
在单极性脉冲、双极性脉冲、带放电回路的脉冲形式下分别对AZ91D镁合金进行微弧氧化试验。研究不同脉冲形式下微弧氧化的负载电压及电流波形,以及脉冲形式对铸造AZ91D镁合金微弧氧化过程及效率的影响。结果表明,带放电回路的脉冲形式能消除负载电容的影响。其微弧氧化过程稳定,弧点均匀,膜层表面光滑,孔洞均匀、密布,有效提高了成膜效率。  相似文献   

8.
电参数对锆材微弧氧化膜层厚度的影响   总被引:1,自引:0,他引:1  
利用微弧氧化技术在锆材表面原位生成微弧氧化膜层。研究电压、占空比、频率和电流密度对锆材微弧氧化膜层厚度的影响,并利用单因素方差分析法,分析各电参数对膜厚影响的显著性。结果表明:在试验范围内,随着电压的升高、占空比的增大、频率的减小或电流密度的增大,锆材微弧氧化膜层厚度增加;各电参数对微弧氧化膜层厚度影响的主次顺序为:电压和电流密度>占空比>频率,其中频率对膜层厚度无明显影响。  相似文献   

9.
AZ91D镁合金微弧氧化电参数对其耐蚀性的影响   总被引:1,自引:2,他引:1  
在铝酸盐体系中对AZ91D镁合金进行微弧氧化处理。利用田口式实验设计法探讨微弧氧化过程电参数对膜层耐蚀性的影响,确定了最佳工艺参数为:电压180V,氧化时间30min,频率50Hz,占空比30%。用交流阻抗分析膜层的耐腐蚀性能,结果表明:最佳工艺条件下所制备微弧氧化,膜层电阻比镁合金基体提高了2个数量级,耐蚀性有所增强。  相似文献   

10.
在铝酸盐体系中对AZ91D镁合金进行微弧氧化处理.利用田口式实验设计法探讨微弧氧化过程电参数对膜层耐蚀性的影响,确定了最佳工艺参数为:电压180V,氧化时间30 min,频率50 Hz,占空比30%.用交流阻抗分析膜层的耐腐蚀性能,结果表明:最佳工艺条件下所制备微弧氧化,膜层电阻比镁合金基体提高了2个数量级,耐蚀性有所增强.  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
韩磊 《腐蚀与防护》2015,36(1):84-90,94
综述了常见的电化学噪声数据处理方法,介绍了直流趋势剔除、统计分析、快速傅立叶变换(FFT)法计算功率谱密度(PSD)以及小波变换处理电化学噪声信号的基本过程,并阐释了各种数学处理及所得参数的物理意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号