共查询到20条相似文献,搜索用时 15 毫秒
1.
采用光学显微镜(OM)、扫描电镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)及动电位极化测试等手段研究了稀土镧添加量对AZ91D镁合金组织和耐蚀性的影响。结果表明:镧的添加使AZ91D镁合金组织细化,β-Mg_(17)Al_(12)相的体积分数减小,并且由连续网状分布变为断续、弥散分布,同时生成新的稀土相Al_(11)La_3,其腐蚀速率明显降低,自腐蚀电位和耐蚀性得到提高。当镧的质量分数为1.0%时,镁合金的腐蚀速率为0.157mg·cm~(-2)·h~(-1),约为AZ91D镁合金的58%;腐蚀电流密度为8.8×10~(-4) A·cm~(-2),相对于AZ91D镁合金的显著降低;自腐蚀电位为-1 429mV(SCE),相比于AZ91D镁合金的自腐蚀电位提高了95.4mV。 相似文献
2.
3.
铈对AZ91D镁合金组织和力学性能的影响 总被引:2,自引:1,他引:2
利用光学显微镜、X射线衍射和扫描电镜等分析研究了含铈AZ91D镁合金(0.26%Ce、0.69%Ce、0.93%Ce)的显微组织及相组成,并对其室温力学性能进行了测试,同时与不含铈AZ91D镁合金的组织和力学性能进行了比较.结果表明,当加入0.69%Ce时,合金铸态组织得到明显细化,网状β相呈弥散的粒状分布于晶界上,同时有大量的针状物Al4Ce相出现;而当加入0.93%Ce时,合金的铸态组织没有细化现象,反而较AZ91D-0.69%Ce的组织有粗化的趋势,且针状化合物长大成杆状.适量稀土Ce可以改善合金的力学性能,当Ce含量为0.69%时,合金的抗拉强度、屈服强度、伸长率及硬度分别比AZ91D镁合金提高15.8%、8.7%、140%及15.7%,其综合力学性能达到最佳.分析了Ce对合金的综合强化机理. 相似文献
4.
AZ91D镁合金表面锰酸盐化学转化膜的研究 总被引:1,自引:0,他引:1
在AZ91D镁合金表面利用无铬的KMn04-Mn(H2PO4)2-pH值调整剂转化液进行化学转化。分析了转化膜的形成机理。经XRD分析结果显示,转化膜为非晶态结构,SEM观察发现,转化膜表面均匀,存在有利于增强涂装层附着力的网状裂纹。转化膜经EDS和XPS分析表明,主要元素为Mg、Al、Mn、O,由MgO、Mg(OH)2、MgAl2O4、MnO2组成。转化后的AZ91D镁合金在3.5%的NaCl溶液中全浸试验结果表明:其腐蚀速率低于其他化学转化膜;其表面采用有机涂料防护,涂层与基底的结合强度优于涂层与Q235钢的结合强度。 相似文献
5.
通过普通凝固技术获得含有0.1%,0.3%,0.5%,0.7%和0.9%Ce的AZ91D镁合金,进行等通道转角挤压(ECAP)实验.利用金相显微镜(OM)、扫描电镜(SEM)观察合金微观组织形貌,用扫描电镜附带的能谱分析仪(EDS)分析其微区组织成分,并测试挤压前后合金的维氏硬度.结果表明,适量Ce的加入可使AZ91D合金在晶界处析出Al4Ce金属间化合物,阻碍基体相生长而细化合金显微组织;Ce量影响Al4Ce金属间化合物的形貌.Ce<0.5%时,Al4Ce相呈颗粒状析出.而Ce>0.5%时,Al4Ce相呈杆状或片状生长;Ce能显著提高AZ91D合金室温硬度;ECAP后合金的强化效果更佳,其中三次挤压后的AZ91D-0.5%Ce合金维氏硬度提高了近1倍. 相似文献
6.
利用扫描电镜 (SEM) 结合能谱分析 (EDS)、X射线衍射 (XRD)、腐蚀失重实验、电化学极化曲线等方法,研究了0.1%,0.4%,0.7%和1.0%的Sm对AZ91D合金的微观组织和腐蚀性能的影响,并对其腐蚀机理进行分析。结果表明:随着Sm含量的增加,合金中粗大的枝状第二相 (β-Mg17Al12) 逐渐断裂变小,其体积分数下降,因为Sm会结合Al形成颗粒状的Al2Sm和杆状的Al3Sm,从而减少晶界处第二相的数量,使第二相呈不连续分布;AZ91D的耐腐蚀性随着Sm加入量的增多,先增加后降低;当Sm加入量为1.0%时,合金的耐腐蚀性与不添加Sm的AZ91D接近;Sm的最佳添加量为0.4%。 相似文献
7.
Sc对AZ91镁合金耐蚀性能的影响 总被引:1,自引:0,他引:1
研究了加入不同量的Sc对AZ91镁合金微观组织和耐腐蚀性能的影响.利用金相显微镜和扫描电镜分析了合金的微观组织,并利用电化学分析技术分析了合金的耐腐蚀性能.结果表明,在0.18%~0.57%范围内随着Sc含量的增加,合金的微观组织不断细化,且合金的耐腐蚀性能得到提高,虽然合金的腐蚀电位变化不大,但合金的腐蚀电流密度变化显著,当Sc的加入量为0.39%时,电流密度最小. 相似文献
8.
通过添加不同量的Mg-Zn-Nd准晶中间合金提高AZ91合金的耐腐蚀性。利用配有能谱分析(EDS)的扫描电子显微镜(SEM),X射线衍射仪(XRD),失重试验和动电位极化测量研究了添加Mg-Zn-Nd准晶中间合金的AZ91合金微观组织和腐蚀行为。结果表明:添加Mg-Zn-Nd准晶中间合金后,AZ91合金的显微组织明显细化,β-Mg17Al12相由连续的网状分布变成不连续的断网或颗粒状分布。此外,β-Mg17Al12相明显减少。当添加质量分数6%MZN准晶中间合金时,合金具有最好的耐腐蚀性,腐蚀速率是0.8(mg·cm-2)/d,仅是AZ91合金腐蚀速率的1/15。但过多的MZN准晶中间合金的添加,会导致AZ91合金有较差的耐腐蚀性。 相似文献
9.
目的通过含有硬脂酸添加剂的阳极氧化工艺,获得耐蚀性优异的镁合金阳极氧化膜。方法采用直流电源阳极氧化法,在含有2 g/L硬脂酸的碱性氧化液中进行阳极氧化。通过SEM、ImageJ软件和TT230测厚仪分析氧化膜的微观形貌和膜厚,通过FTIR、XPS和XRD分析膜层成分,通过电化学测试检测膜层的耐蚀性能。结果氧化液中添加硬脂酸后,制备的氧化膜层孔隙率降低,孔径减小,孔洞数量下降,厚度增大,致密度提高。膜层的自腐蚀电流密度为3.15×10^–7 A/cm^2,与未加硬脂酸制备的氧化膜相比,降低了2个数量级,耐蚀性显著提升。结论硬脂酸添加剂通过提升成膜电压,增强火花放电效应、表面活性剂作用,改变膜层成分等机制,提升膜层耐蚀性能。 相似文献
10.
通过盐雾腐蚀试验,研究了稀土Y对AZ91D镁合金耐腐蚀性能的影响。用光学显微镜(OM)观察组织结构,应用XRD对其进行物相分析,采用静态失重法计算其腐蚀速率,比较含Y和不含Y的AZ91D镁合金的组织和耐腐蚀性能。结果表明,Y+AZ91D镁合金在NaCl溶液中具有优异的耐蚀性,并且随Y含量的增加,Mg17Al12相增多,针状组织Al4MgY也增多,细化了合金的微观组织,耐腐蚀性能也进一步得到提高。 相似文献
11.
采用高频脉冲电源和阶梯降流的方法,于碱性偏铝酸钠溶液中在AZ91D合金表面制备阳极氧化膜.研究了成膜过程、膜层的结构和形貌,评价了膜层的耐酸性和在3.5%NaCl溶液中的耐腐蚀性能.结果表明:在本试验条件下,AZ91D合金表面可形成内层致密且较厚、外层相对较薄、厚度约100μm的氧化膜;阳极氧化膜的耐酸能力远高于基体;经阳极氧化处理后的合金的自腐蚀电位正移,在腐蚀性介质中极化阻力增大,腐蚀电流密度降低,耐腐蚀性能显著提高. 相似文献
12.
以AZ91D镁合金为基体,Al为合金粉末,采用激光表面改性技术对AZ91D镁合金进行表面改性,详细分析了镁合金改性后的表面组织,并通过盐雾实验对比了改性前后镁合金的耐蚀性,探讨了AZ91D镁合金基体及表面Mg-Al改性层的腐蚀机理,确定最佳激光功率参数为1.5 kW。 相似文献
13.
合金化对AZ91D镁合金组织与力学性能的影响 总被引:7,自引:0,他引:7
利用光学显微镜(OM)和X射线衍射(XRD)分析了分别加入合金化元素Ce,Si和Ca后AZ91D合金的铸态组织和相组成,测试了合金室温拉伸性能和硬度。结果表明:加入Ce和Si后合金组织中分别生成杆状Al4Ce和汉字状Mg2Si相,而加入Ca后无新相生成,加入的Ca主要固溶于β相中;Al4Ce和Mg2Si相在合金凝固过程中被推移到生长界面,Ca原子偏聚在生长界面前沿,从而阻碍枝晶的自由生长,细化合金铸态组织:Ce和Ca的加入可提高合金室温综合力学性能,且前者提高程度要高于后者提高程度,而Si的加入却降低合金室温综合力学性能。 相似文献
14.
采用常温碱性超声波清洗、酸洗和活化的前处理工艺在AZ91D镁合金表面化学镀镍,研究了辅助络合剂氨基乙酸和加速剂巯基乙酸对镀层耐蚀性的影响。结果表明:镀层表面由Ni-P固溶体组成,呈现尖锐的晶态峰,磷原子与镍原子形成置换固溶体,表面平整致密,无明显缺陷。氨基乙酸含量对镀层耐蚀性和腐蚀速率影响不大,随着巯基乙酸含量的增加,镀层腐蚀电位先升高后降低,腐蚀速率整体比镁合金基体慢,镀层总体呈现钝化趋势,在4 g/L时腐蚀电位最高。 相似文献
15.
为了提高镁合金磷化盐转化膜的耐腐蚀性能,向镁合金磷酸处理液中添加NH4VO3,采用中性盐雾实验、Tafel曲线和电化学阻抗测试、扫描电镜 (SEM) 测试和能量色散谱仪分析等方法检测膜层的性能,研究了NH4VO3对镁合金表面磷酸盐转化膜耐蚀性的影响。结果表明:加入NH4VO3后,镁合金化学转化膜表面的裂纹有细化和孔洞有减少的趋势;化学转化膜呈现明显的容抗特性,电化学阻抗可达273.6 Ω;自腐蚀电位正移了121.6 mV,自腐蚀电流密度明显减小,降低了接近一个数量级,耐腐蚀性能得到了很大的提升,表面化学转化膜的耐中性盐雾腐蚀时间大幅度增加,达到41 h。 相似文献
16.
研究了Be含量对AZ91镁合金的铸态组织、力学性能和耐腐蚀性能的影响.结果表明,AZ91镁合金中添加合金元素Be后,初生相α-Mg的大小以及γ-Mg17A112相的形态、大小与分布发生了明显的变化.Be对AZ91镁合金抗拉强度和伸长率的影响具有相似的趋势,即随着Be含量的增加,AZ91镁合金的抗拉强度和伸长率呈现先降后升、然后又降的趋势.当Be含量为0.15%时,抗拉强度和伸长率分别达到最大值167.74 MPa和5.87%,分别比未添加Be时增加了11.4%和215.6%.AZ91镁合金中添加Be的腐蚀率均比未加Be时高,说明Be的加入可降低AZ91镁合金的耐腐蚀性能. 相似文献
17.
研究了0.5,1.0和1.5(质量分数,%,下同)的Ca对铸态AZ91镁合金微观组织和耐蚀性的影响。利用OM、SEM/EDS和XRD观察金相组织、进行微观分析和确定相组成。分别采用静态失重腐蚀、电化学腐蚀和盐雾腐蚀对不同成分的AZ91合金进行实验。结果表明,0.5Ca的存在没有形成任何新的金属间相,而是通过溶解于第二相和基质中抑制β-Mg17Al12相的不连续沉淀。AZ91-1.0Ca合金耐蚀性最好。AZ91-1.0Ca和AZ91-1.5Ca合金中出现了骨状的Al4Ca相,并且β相尺寸显著下降。在AZ91-1.0Ca合金中,β相分布十分均匀。因此,可以认为,随着不同含量Ca的加入,铸态AZ91镁合金耐蚀性的变化是由于其微观组织的变化而引起的。 相似文献
18.
19.
为了获得性能优异的转化膜层,利用正交试验确定了组分为Ca(NO3)2、含Mn成膜剂、磷酸(85%)和加速剂的AZ91D镁合金多元复合转化处理液优化配方.用扫描电镜和X射线衍射仪分析了该配方所得转化膜的表面形貌和相结构.试验表明:转化膜表面分布着未穿透转化膜的裂纹,多元复合膜层由非晶态物质以及少量的Ca0.965Mg2Al16O27、Mn5.64P3、ZnAl2O4和(Mg0.66Al0.34)(Al0.83Mg0.17)2O4晶体构成.通过极化曲线分析转化膜在5%的NaCl溶液中的耐蚀性能,结果表明:多元转化膜具有比传统含Cr6+化合物的Dow1处理工艺所得转化膜优良的耐蚀性能. 相似文献