首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of increasing MgO/Na2O replacements (on mole basis) on the crystallization characteristics of glasses based on the CaO–Na2O(MgO)–P2O5–CaF2–SiO2 system were studied by using DTA, XRD, and SEM. The crystallization characteristics of the glasses, the type of crystalline phases formed and the resulting microstructure were investigated. The main crystalline phases formed after controlled heat-treatment of the base glass were diopside, wollastonite solid solution, fluoroapatite and sodium calcium silicate phases. The increase of MgO at the expense of Na2O led to decrease the amount of sodium calcium silicate phase. The Vicker's microhardness values (5837–3362 MPa) of the resulting glass–ceramics were markedly improved by increasing the MgO-content in the glasses. The obtained data were correlated to the nature and concentration of the crystalline phases formed and the resulting microstructure.  相似文献   

2.
《Ceramics International》2022,48(6):7796-7805
In this work, phospho-silicate glasses with SiO2–P2O5–Na2O–F-MO (M = Ca, Sr, Zn) composition were prepared by using the conventional melt quenching technology. Structural, physical, and chemical property tests were used to analyze the effects of different SrO and ZnO content on the structure and properties of the glasses. The results showed that the glass stability varied nonlinearly as CaO was replaced by SrO, which was mainly related to the different positions of Sr2+ and Ca2+ ions breaking the network connection in the network structure, and the substitution of ZnO for CaO led to a continuous decrease in the stability of the glasses. The immersion experiment showed that SrO doping was more feasible than ZnO doping to improve the biological activity of the glasses, and the doping of ZnO promoted the dissolution of ions in the glasses. The obtained results indicated that the glass samples prepared in this paper have potential biological activity, which has potential applications in dental treatment.  相似文献   

3.
Mona A. Ouis 《SILICON》2011,3(4):177-183
Some glasses based on Hench’s patented bioglass have been prepared with ZnO replacing Na2O or CaO in order to investigate their bioactivity in the glassy state or after conversion to their glass-ceramic derivatives. In-vitro investigations of bioactivity of the prepared glass and their glass-ceramics derivatives were carried out by Infrared absorption spectra (IR) of the samples before and after immersion in simulated body fluid (SBF) for different time periods at 37 °C. An X-ray Diffraction (XRD) analysis technique was performed on the glass-ceramic samples to identify the crystalline phases formed during the controlled thermal treatment. Chemical corrosion experiments were also performed to evaluate the chemical behaviour of both glassy and the glass-ceramic derivatives towards SBF. The IR results showed that the amount of the apatite layer formed on the surface of the sample containing ZnO depends on the wt% of ZnO content. The X-ray results indicate that there are two phases formed: sodium calcium silicate and kilchoanite. Weight loss data were observed to change depending on the percent of ZnO and the role of housing of Zn2+ in the glass structure. Corrosion behaviour of glass-ceramic derivatives indicates higher durability than in the corresponding parent glasses as expected.  相似文献   

4.
Glass–ceramic materials in the composition (mol%) 23.5 Na2O–23.5CaO–xMgO–xZnO–47SiO2–(6-2x) P2O5 (x = 0 and 1.5) were prepared by the sol–gel technique using sodium metasilicate (Na2SiO3) as source of Na2O and SiO2. Bioactivity was investigated in vitro by examining apatite formation on the surface of the samples after treatment in acellular simulated body fluid (SBF). Formation of bioactive apatite layer on the samples was confirmed by using scanning electron microscope, X-ray diffraction and Fourier transform infrared spectroscopy. Reactivity of the materials in SBF was based on changes in pH and ionic concentration of the solution as a function of immersion duration. Results obtained indicated that the sample doped with Mg and Zn exhibited greater crystallinity containing phases such as CaMgSi2O6, Ca2MgSi2O7, CaSiO3, Na2CaSi3O9, Na2CaSi3O8, CaZnSi2O7 and a new secondary phase, clinohedrite (CaZnSiO4·H2O), while the undoped sample contained a single crystalline phase composed of Na2Ca2Si3O9. After 7 days in SBF, phase transformation occurred at different rates on the materials leading to formation of apatite layer. The result shows that controlled amounts of MgO and ZnO may be useful in tuning up the mechanical properties of bioactive glasses while maintaining bioactivity.  相似文献   

5.
《Ceramics International》2022,48(18):25958-25967
The formation thermodynamics, phase transition and stability of sodium calcium silicate compounds under different calcination parameters in the Na2O–CaO–SiO2 system were studied using XRD, FTIR and SEM-EDS methods. As the Na2O/SiO2 ratio increases from 0.3 to 0.7 when the CaO/SiO2 ratio is 1.0, the formation sequence of sodium calcium silicate compounds is Na2Ca3Si2O8→Na6Ca3Si6O18→Na2Ca2Si2O7→Na2CaSiO4; as the CaO/SiO2 ratio increases from 0.3 to 1.2 when the Na2O/SiO2 ratio is 0.5, the formation sequence is Na6Ca3Si6O18→Na2Ca2Si2O7→Na2Ca3Si2O8. As the most stable sodium calcium silicate compound, Na6Ca3Si6O18 forms by the solid-state reaction of preformed Na2SiO3 with CaO and SiO2, while increasing the calcination temperature and holding time can promote its crystal stability. The decomposition of Na6Ca3Si6O18 in sodium aluminate solution follows the mixed control of the film diffusion and chemical reaction, and the corresponding activation energy is between 40 and 41 kJ/mol.  相似文献   

6.
Unlike ambient pressure silicate glasses, some phosphosilicate glasses contain sixfold-coordinated silicon (Si6) units even when prepared at ambient pressure. The variation in the fraction of Si6 with composition remains a topic of interest, both for technological applications of phosphosilicate glasses and for fundamental understanding of the glass structure. In this work, we use statistical mechanical modeling to predict the composition–structure relationships in Na2O–P2O5–SiO2 and CaO–P2O5–SiO2 glasses. This is achieved by accounting for the enthalpic and entropic contributions to the interactions between each pairwise modifier ion and structural unit. The initial enthalpy parameters are obtained based on experimental structural data for binary Na2O–SiO2, CaO–SiO2, Na2O–P2O5, and CaO–P2O5 glasses, which can then be transferred to predict the structure of mixed former glasses. This approach has previously been used to predict the short-range structure of borosilicate and aluminoborate glass systems. However, here we show that the formation of Si6 must be specifically included to make accurate predictions of the composition–structure relationships in phosphosilicate glasses. After incorporating the formation mechanism of Si6 in the statistical mechanics model, we find an excellent agreement between model predictions and experimental structure data for Na2O–P2O5–SiO2 and CaO–P2O5–SiO2 glasses.  相似文献   

7.
The thermochemical behavior of EBC candidate materials yttrium disilicate (Y2Si2O7) and ytterbium disilicate (Yb2Si2O7) was evaluated with three calcium-magnesium-aluminosilicate (CMAS) glasses possessing CaO:SiO2 ratios relevant to gas turbine systems. Pellet mixtures of 50 mol% EBC powder to 50 mol% CMAS glass powder were heat treated at 1200°C, 1300°C, and 1400°C. The products of these interactions were evaluated using X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. Above glass melting temperatures, exposure of the disilicates primarily resulted in dissolution into the molten glass followed by precipitation of a Ca2RE8(SiO4)6O2 (RE = Yb3+, Y3+) apatite-type silicate and/or rare earth disilicate. In glasses with high CaO concentrations, apatite readily forms while the disilicate material is consumed by the reaction. As CaO content decreases, the disilicate phase becomes the main reaction product. Overall, reactions with yttrium disilicate favored more apatite crystallization than ytterbium disilicate. The viability of using these disilicates in various operating environments is discussed.  相似文献   

8.
The influence of varying the CaO/MgO ratio on the structure and thermal properties of CaO–MgO–SiO2–P2O5–CaF2 glasses was studied in a series of eight glass compositions in the glass forming region of diopside (CaMgSi2O6)–fluorapatite [Ca5(PO4)3F]–wollastonite (CaSiO3) ternary system. The melt-quenched glasses were characterized for their structure by infrared spectroscopy (FTIR) and magic angle spinning (MAS)-nuclear magnetic resonance (NMR) spectroscopy. Silicon is predominantly present as Q2 (Si) species, while phosphorus tends to coordinate in orthophosphate environment. The sintering and crystallization parameters of the glasses were obtained from differential thermal analysis (DTA) while crystalline phase fractions in the sintered glass–ceramics were analyzed by X-ray diffraction adjoined with Rietveld refinement. Diopside, fluorapatite, wollastonite and pseudowollastonite crystallized as the main crystalline phases in all the glass–ceramics with their content varying with respect to variation in CaO/MgO ratio in glasses. The implications of structure and sintering behaviour of glasses on their bioactivity were discussed.  相似文献   

9.
Natural bovine hydroxyapatite/SiO2–CaO–MgO glass–ceramics were produced using the transferred arc plasma (TAP) processing method. Homogeneous mixtures of HA/25 wt% SiO2–CaO–MgO and HA/50 wt% SiO2–CaO–MgO batches obtained by dry mixing the respective compositions in a ball mill were processed in argon plasma using the TAP torch at 5 kW for 1, 2 and 3 min, respectively. The synthesized glass–ceramic samples were studied for phase composition, microstructure and bioactivity. The phase study of the synthesized glass–ceramics revealed the formation of calcium phosphate silicate with traces of calcium silicate. The structural study by SEM revealed that the prepared samples possessed smooth glassy surface morphology. The in vitro-bioactivity of the TAP synthesized glass–ceramics was examined in simulated body fluid (SBF). The SBF test results confirmed the development of crystalline carbonated apatite phase after 12 days of immersion. The cytocompatibility was evaluated through human fibroblast cell proliferation. The fibroblasts culture results showed that the sample was non-toxic and promoted cell growth.  相似文献   

10.
《Ceramics International》2016,42(5):5842-5857
The effect of SrO substitution for CaO in two sol–gel glasses with different chemical compositions (mol%) A2Sr: (54−x)CaO–xSrO–6P2O5–40SiO2 and S2Sr: (16−x)CaO–xSrO–4P2O5–80SiO2 (x=0, 1, 3 and 5) stabilized at 700 °C on their structure (XRD, FTIR) and bioactive properties (SBF test) was investigated. Preliminary in vitro tests using human articular chondrocytes of selected A2Sr glass were also conducted. Moreover, the subject of this study was to detect the changes on material properties after heat treatment at 1300 °C. The results show that the effect of strontium substitution on structure, bioactivity and crystallization after treatment at both the above temperatures strongly depends on CaO/SiO2 molar ratio. The presence of 3–5 mol% of strontium ions creates more expanded glass structure but does not markedly affect crystallization ability after low temperature treatment. Sintering at 1300 °C of A2 type glasses results in crystallization of pseudowollastonite, hydroxyapatite and also Sr-substituted hydroxyapatite for 3–5 mol% of SrO substitution. The increase of strontium concentration in silica-rich materials after sintering leads to appearance of calcium strontium phosphate instead of calcium phosphate. Bioactivity evaluation indicates that substitution of Sr for Ca delays calcium phosphate formation on the materials surface only in the case of silica-rich glasses treated at 700 °C. Calcium-rich glasses, after both temperature treatments, reveals high bioactivity, while crystal size of hydroxyapatite decreases with increasing Sr content. High temperature treatment of high-silica glasses inhibits their bioactivity. Preliminary in vitro tests shows Sr addition to have a positive effects on human articular chondrocytes proliferation and to inhibit cell matrix biomineralization.  相似文献   

11.
《Ceramics International》2022,48(6):7643-7651
In this study, the effect of replacing CaO by BaO on mechanical properties, bioactivity, and cell adhesion of SiO2–B2O3–Al2O3–P2O5–CaO–Na2O based glass was investigated. Mechanical characterization, depth-sensing nano-indentation, and surface micro-indentation techniques were employed to determine the fracture toughness (KIC). The surface was photographed after micro-indentation effect using scanning electron microscopy. In vitro responses of the compounds of tris-buffered SBF solution were studied from different points of view: (i) morphology and elemental surface analysis using field emission electron microscopy equipped with energy dispersive spectroscopy; (ii) change in bonds using Raman spectroscopy; and (iii) ICP method for detecting the change in ion chemistry of SBF solution. The cell adhesion behavior was qualitatively evaluated by examining the morphology and attachment of mouse fibroblastic cells to the surface of the glasses. The results demonstrated that with the replacement of barium oxide, the hardness of the base glass increased, while the level of fracture toughness was maintained. In addition, in vitro bioactivity of barium oxide-containing glass was reduced compared to the base glass. However, structural dissolution and formation of calcium phosphate layers on their surfaces were also confirmed. The results showed that BaO-incorporated glasses had adequate cell propagation and proliferation, hence enjoying appropriate biocompatibility for use in coating applications.  相似文献   

12.
《Ceramics International》2016,42(10):11858-11865
Glass and in-situ nanocrystalline glass-ceramics of compositions 45SiO2-25CaO-10Na2O-5P2O5-xFe2O3-(15-x) MnO2 are investigated for their magnetic and in-vitro bioactive properties. The ferrimagnetic character is observed in the high Fe2O3 containing in-situ nanocrystalline glass-ceramics. Saturation magnetization and coercivity increases with Fe2O3. After soaking in the simulated body fluid (SBF), the powdered as well as the bulk glasses and glass-ceramics are investigated using various characterization techniques. The presence of MnO2 increases the leaching of Na+ ions from the glasses and also attracts the Ca2+ cations from the SBF as compared to Fe2O3 containing nano-crystalline glass-ceramics. It also increases the tendency to form hydroxyl apatite (HAp) layer. Microwave Plasma Atomic Emission Spectroscopy (MP-AES), Fourier Transform Infrared (FTIR) spectra, X-ray diffraction and Scanning electron micrographs (SEM) after soaking in the SBF confirm the HAp formation on the surface of all the glasses and glass-ceramics. Urbach energy also indicates the structural modifications on the surfaces of the glass and glass-ceramics after soaking in the SBF.  相似文献   

13.
《Ceramics International》2017,43(13):10144-10150
In the present work, glasses of a particular composition (60-x) P2O5-20CaO-17Na2O-3K2O: xSrO (0.5≤x≤1.5) mol% were synthesized using conventional melt quenching technique. Further, samples were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Differential Thermal Analyses (DTA) techniques and Fourier Transform Infrared (FT-IR) spectra. In vitro bioactivity was evaluated by soaking glass ceramic powders in SBF solution for 7 and 15 days. XRD patterns of glass ceramics have clearly confirmed the formation of various crystalline phases K2Sr(PO3)4, α-Ca2P2O7, Ca2Sr(PO4)2, Ca5(PO4)3(OH) and Ca3(PO4)2. Random spreading of uneven sized micro crystals with distinct boundaries in the glass matrix have been observed from SEM pictures. DTA scans revealed an increase in the content of SrO with heating rate causes the glass transition (Tg) and crystallization temperatures (Tc) towards lower side, that confirms the decrease in rigidity of glass network. FT-IR spectra showed that there is an increase in the degree of structural disorder and the formation of a crystalline hydroxyapatite layer with soaking time. From the analyses of all the above results, it can be concluded that the sample doped with 1.5 mol% of strontium is found to exhibit high bioactivity.  相似文献   

14.
《Ceramics International》2017,43(13):9691-9698
Zr-incorporated CaO-P2O5-SiO2-SrO-ZrO2 (BG-Zr) bioactive glasses were prepared through the sol-gel process by adding zirconium oxychloride to the synthesis batch as the zirconia precursor. The added amount of ZrO2 was 5, 8 and 11 wt%, respectively, to replace the same amount of CaO. The effect of ZrO2 on the solubility, bioactivity and structural properties of BG-Zr were investigated. The differential thermal analysis (TG/DTA) and X-ray diffraction (XRD) indicated that the addition of ZrO2 to the base glass composition increased its crystallization temperature as well as weakened its crystallization tendency. Zr4+ ion substituted for Ca2+ favors covalent O-Zr-O bonding formation, making the glass network stronger, and thus BG-Zr glasses exhibit enhanced bending strength. Immersion tests in hydroxymethylaminomethane (Tris) buffer and simulated body fluid (SBF) show BG-Zr glasses to exhibit slower dissolution rate and lower rate of apatite formation with increasing ZrO2 content compared to the base glass, which is likely associated with their structure stabilization and lower solubility.  相似文献   

15.
In Na2O–CaO–SiO2–H2O system, systematic investigations of phase and morphology of calcium silicate in hydrothermal conditions were concisely conducted for high-value utilization of silicon resource in high-alumina fly ash (HAFA). The results show that crystal composition and phase may be affected by relatively low concentration of NaOH, and sodium ions are rearranged into the structure to form NaCaHSiO4 and Na2Ca3H8Si2O12 with different C/S ratio at high concentration of NaOH. In addition, phases in wollastonite group possess the morphology of nanofiber. Formation of nanofiber is attributed to the difference of surface energies between axial and radial direction, and higher temperatures lead to easier growth along radial direction. The preparation of C–S–H with different phases and morphologies can guide for the application of silicate solution with high alkalinity with different purposes.  相似文献   

16.
Some ceramics have the ability to form direct bonds with surrounding tissues when implanted in the body. Among bioactive ceramics, the apatite/wollastonite (A/W) glass–ceramic, containing apatite and wollastonite crystals in the glassy matrix, has been largely studied because of good bioactivity and used in some fields of medicine, especially in orthopaedics and dentistry. However, medical applications of bioceramics are limited to non-load bearing applications because of their poor mechanical properties. In this study, A/W powders, obtained from industrial and high grade quality raw materials, were thermally sprayed by APS (atmospheric plasma spraying) on Ti–6Al–4V substrates, in order to combine the good bioactivity of the bioceramic and the good mechanical strength of the titanium alloy base material. The microstructure and the resulting properties were evaluated depending on processing parameters and post-processing thermal treatments. The morphology and the microstructure of the coatings were observed by SEM and the phase composition was examined by X-ray diffraction. The bioactivity of the coatings was evaluated by soaking the samples in a simulated body fluid (SBF) for 1, 2 and 5 weeks. The bioactive behaviour was then correlated with the thermal treatments and the presence of impurities (in particular Al2O3) in the coatings.  相似文献   

17.
This study reports on the sintering behavior, crystallization process, and mechanical properties of novel glass-ceramics (CGs) produced by the glass powder compact consolidation method. Substitution of K2O for Na2O and MgO for CaO was attempted in the parent glasses belonging to Na2O-CaO-MgO-SiO2-P2O5-CaF2 system. Glass powder compacts were heat treated at various temperatures between 700°C and 900°C, taking under consideration the glass transition (Tg) and the crystallization peak (Tp) temperatures, which were experimentally determined for each investigated glass by thermal analysis (dilatometry and differential scanning calorimetry). The experimental results showed that sintering always preceded crystallization, regardless of the type of substitution. In the case of MgO substitution for CaO, crystallization was advanced in the range of 800°C-850°C, resulting in the formation of an assembly of crystalline phases, such as diopside, fluorapatite, and wollastonite. The substitution of K2O for Na2O increased the activation energy for crystallization, shifting crystallization process to a high temperature region, with the formation of alpha-potassium magnesium silicate, instead of wollastonite. The GCs produced had values of 22-31 GPa regarding the modulus of elasticity, 5.0-6.1 GPa concerning the microhardness, and 1.4-1.9 MPa⋅m0.5 as regard the fracture toughness, which are similar to those of the human jawbone.  相似文献   

18.
《Ceramics International》2023,49(19):31591-31597
This research aims to assess the bioactive properties of the modified borate glasses containing extremely low concentrations (≤5 mol.%) from chromium sulfate (Cr2(SO4)3). The glasses in the system xCr2(SO4)3.(60–x)B2O3.15CaO.15Na2O.10P2O5, where x = 0, 1, 2, and 5 mol.% were prepared by the melt quenching technique. All glass samples have been treated thermally at 600 °C for 6 h. Fourier Transform Infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD) measurements were carried out to differentiate between the structural changes before and after soaking in the simulated body fluid (SBF) at about 37 °C for 1, 2, and 3 weeks. Glass-ceramic samples have showed sharper peaks that are identified using X-ray diffraction data. These crystalline phases are indexed to crystalline calcium borate (Ca2B2O3) and calcium phosphate (Ca3(PO4)2). In vitro tests, FTIR spectra revealed two small bands in the 560-610 cm−1 range which might be assigned to the formation of a hydroxyapatite layer (HA). The formation of HA was also confirmed by XRD results, particularly after immersion in SBF for 21 days. The study suggests that the presently studied glasses containing Cr2(SO4)3 can possess good bioactivity which might be considered to be suitable for some bio and medical applications.  相似文献   

19.
The glasses with compositions derived from the eutectic composition [37.78 (Y3Al5O12)·62.22 (SiO2)] of the quasi-binary glass system (Y3Al5O12)-(SiO2) with addition of up to 20 mol.% CaO were investigated as model grain boundary phases for Si3N4 ceramics. The influence of CaO as model impurity on the physical properties of the glass (density, thermal expansion) and on the crystallisation behaviour was studied. Although the initial composition of the basic glass was that of yttrium-aluminium garnet (Y3Al5O12–YAG), no crystalline YAG was detected. Apart from yttrium disilicate (Y2Si2O7), anorthite (CaAl2Si2O8), tricalcium aluminate (Ca3Al2O6), and calcium yttrium oxide silicate (Ca4Y6O(SiO4)6), a new phase was detected, not found in the powder diffraction file (PDF) database. Cavities were formed within the devitrified glass due to the volume contraction after crystallisation. Possible implications for the mechanical properties of Si3N4 ceramics sintered with addition of Y2O3–Al2O3 are discussed in terms of the observed compositional dependences of the physical properties of CaO–Y2O3–Al2O3–SiO2 glasses.  相似文献   

20.
《Ceramics International》2022,48(9):12430-12441
Since the discovery of 1970s, bioactive glass has been a hot topic of research because of its excellent biological activity, which makes it a material that can repair and replace human bone tissue organs. In this work, the bioactive glasses in the system SiO2–P2O5–Na2O–CaO–F with different amounts of strontium oxide (SrO) and zinc oxide (ZnO) were prepared by the conventional melt quenching technology. The hydroxyapatite (HA) forming ability, ion release and antibacterial activity of these prepared glasses were investigated and the obtained results illustrated that SrO-doped samples had a better ability to form HA in modified simulated body fluid (MSBF) than ZnO-doped samples. As the immersion time of the sample in MSBF increased, the content of HA phase gradually increased. In the same immersion time, the formation ability of HA and the variation of SrO substitution amount showed a non-linear trend, which is mainly related to the influence of SrO content on the glass network structure. The results of ion concentration showed that the formation of HA was the result of the comprehensive action of various ions in the solution, especially the release rate of Si4+ ions, which had a direct impact on the formation ability of HA. The antibacterial test illustrated that the difference in antibacterial activity of bacteria solution at different sample concentrations may be related to the high pH environment and the osmotic effects caused by the non-physiological concentration of ions in the solution. The glass sample contained 4 wt% SrO showed the minimum bactericidal concentration at 64 mg/mL. The glass samples prepared in this experiment had good biological activity and antibacterial effect, making them suitable for using in dentistry and orthopedic applications, as well as providing a valuable composition reference for the preparation of bioactive glass with excellent comprehensive properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号