共查询到19条相似文献,搜索用时 62 毫秒
1.
基于改善M390高碳马氏体不锈钢与304奥氏体不锈钢焊接接头的力学性能特别是提高焊接接头硬度,以达到高端刀具生产的要求,对冷金属过渡焊接M390高碳马氏体不锈钢与304奥氏体不锈钢获得的焊接接头进行不同工艺的热处理研究.采用拉伸、维氏显微硬度测试及扫描电镜(SEM)表征不同热处理工艺的焊接接头力学性能及微观组织演变,统计了不同热处理工艺下焊接接头中M390母材、M390细晶区和M390粗晶区等区域的碳化物分布,研究了不同热处理工艺下焊接接头的断裂机理.研究结果表明,在1 150℃水淬热处理工艺下焊接接头既满足刀具钢硬度的要求,又具有良好的力学性能,可以作为M390/304焊接接头的最佳热处理工艺,对应焊接接头的抗拉强度和断后伸长率为502 MPa和20.8%,抗拉强度和断后伸长率分别是焊态的98%和95%. 1 150℃水淬热处理工艺的M390母材、细晶区和粗晶区中碳化物平均尺寸最小,碳化物形貌以细小的块状均匀分布.淬火温度升高,抗拉强度和断后伸长率均呈现出先下降后升高的趋势,随着冷却速度的减小,抗拉强度和断后伸长率均呈现出下降的趋势.不同热处理工艺下焊接接头的断裂位置在M390粗晶区... 相似文献
2.
3.
研究了F206钢的时效处理工艺及其显微组织与性能。试验结果表明,经830-860℃加热空冷后,在510℃时效5小时,产生明显的二次硬化效应,含碳从0.14%增至0.18%,钢的抗张强度1635和1830MPa,当晶粒尺雨粗化到34μm时,钢的强度和韧性均有明显的降低。 相似文献
4.
通过光学显微镜观察试验钢的显微组织,利用万能试验机、摆锤冲击试验机和布氏硬度计分别检测试验钢的强度、塑性、冲击性能和硬度,研究了热处理工艺对60CrNiMo轧辊钢组织性能的影响。结果表明,400℃等温淬火时得到的贝氏体和珠光体的混合组织其强度和塑韧性较差;相比较于马氏体等温淬火+高温回火工艺,采用两相区亚温淬火,形成的铁素体和回火马氏体双相组织,可有效改善试验钢的力学性能,并且可以避免淬火裂纹的产生;试验钢经马氏体等温淬火+亚温淬火+高温回火热处理后其布氏硬度为318 HBW,规定塑性延伸强度(R_(p0.2))为797 MPa,抗拉强度为981 MPa,伸长率15%,断面收缩率为46%,室温冲击吸收能量达到66 J,各项性能指标均优于国家标准JB/T 6401—2017中的要求。 相似文献
5.
以国外Inconel 690成品管的显微组织为参照对象,对国产GH690合金管材在不同工艺条件下的固溶处理与TT处理工艺进行了研究;采用OM、SEM和TEM等表征手段分析了工艺参数对其晶粒度、晶界碳化物形貌和贫Cr区的影响。结果表明:国产GH690合金管在固溶处理过程中,随着固溶温度的提高,尺寸较大晶粒所占比例逐渐升高,长大激活能为265 kJ/mol。当固溶温度超过1100℃时,保温时间对晶粒尺寸影响显著。国产GH690合金管析出细小半连续晶界碳化物的TT处理工艺参数为680℃/10~20 h,715℃/10~20 h,750℃/5~15 h。经1090~1110℃/5 min固溶处理以及715℃/10 h或15 h的TT处理后,国产GH690合金管晶粒尺寸分布、晶界碳化物形貌特征和贫Cr区演化特征与国外Inconel 690成品管非常相似;而其TiN颗粒数量和尺寸明显少于和小于后者,贫Cr区的最低Cr浓度高于后者。通过对显微组织特征的综合评价,表明国产GH690合金管的显微组织总体优于国外Inconel 690成品管。同时,兼顾实际生产中的成本问题,提出国产GH690合金管热处理工艺优化的建议。 相似文献
6.
X70钢级热轧无缝管线钢热处理工艺研究 总被引:2,自引:0,他引:2
分析了X70钢级热轧调质无缝管线钢热处理工艺及性能和组织的变化,该管线钢的性能能达到美国API 5 L标准.试验结果表明:该钢在920℃保温38 min水冷,550℃回火78 min后有较高的强度和韧性. 相似文献
7.
8.
9.
10.
利用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、室温拉伸检测等方法研究了热处理工艺对空气硬化钢S800AH显微组织和力学性能的影响。结果表明:空气硬化钢在空冷状态下即获得了大量的马氏体和粒状贝氏体;随热处理温度的升高,空气硬化钢的奥氏体化程度增加,强度先升高后略有下降,屈服强度、抗拉强度在900℃时达到最大,分别为781 MPa和1007 MPa。空气硬化钢具有较高的抗回火性能,当回火温度在500℃以下时,屈服强度和抗拉强度分别仍高于700 MPa和800 MPa。回火过程中细小弥散的析出物抑制了回复与再结晶,同时具有析出强化作用,使得钢具有优良的综合力学性。 相似文献
11.
研究了热处理工艺对M2高速钢组织和性能的影响。结果表明:M2高速钢淬火后的组织为淬火马氏体+残留奥氏体+大量碳化物;随着淬火温度的升高,M2钢淬火后残留奥氏体含量(质量分数)升高,经3次回火后残留奥氏体基本上完全消除,增加冷处理后残留奥氏体的含量相对于3次回火的要多,钢的强度和韧性得到改善。对比M2高速钢在不同热处理工艺条件下的组织和性能,最佳热处理工艺为850 ℃×30 min预热+1160 ℃×30 min淬火+(-65 ℃×1 h)冷处理+560 ℃×2 h回火3次。 相似文献
12.
13.
采用激光增材制造技术制备了Ferrium M54钢,研究了传统热处理对其组织和力学性能的影响。利用光学显微镜(OM)、扫描电镜(SEM)、X射线衍射仪(XRD)、拉伸试验机及维氏硬度计分析了沉积态和热处理后试验钢的微观组织和力学性能。结果表明,激光增材制造M54二次硬化钢是由沿沉积方向生长的柱状晶构成,沉积态试样纵向的抗拉强度和屈服强度分别为1832 MPa和997 MPa,断后伸长率和断面收缩率分别为9.5%和28%;经过传统热处理后,定向凝固形成的胞状结构消失,得到马氏体组织。经1075 ℃固溶+1060 ℃油淬+-73 ℃深冷+510 ℃时效处理后激光增材制造 Ferrium M54钢的性能最好,抗拉强度为1863 MPa,屈服强度为1594 MPa,断后伸长率为15%,断面收缩率为59%,硬度为603 HV。 相似文献
14.
利用光学显微镜、拉伸及冲击试验机等仪器研究了不同热处理工艺对5Cr钢组织和力学性能的影响,利用高温高压反应釜模拟腐蚀过程,并结合电化学测试对比分析了热轧态和调质态钢的耐腐蚀性能。结果表明:5Cr钢经淬火+回火处理后,组织中碳化物弥散析出,具有较高的强度和良好的塑、韧性。热轧态钢的腐蚀速率为0.188 mm/a,调质态钢为0.158 mm/a。调质态钢中作为阴极的碳化物(Fe3C)少且均匀弥散分布,组织自腐蚀电位较高,腐蚀电流密度较低,电偶腐蚀程度较浅,耐腐蚀性能较好。 相似文献
15.
18Cr2Ni4WA钢真空渗碳后热处理工艺的优化 总被引:1,自引:0,他引:1
制定了两种不同的热处理工艺,研究18Cr2Ni4WA钢真空渗碳后回火、淬火和深冷工艺对材料组织和性能的影响。结果表明,18Cr2Ni4WA钢渗碳后,经高温回火、淬火、深冷和低温回火处理后,渗碳层深度几乎不受影响,表面残留奥氏体含量显著降低。经680 ℃×5 h两次高温回火+860 ℃淬火+-115.3 ℃深冷+160 ℃低温回火工艺处理后,试样表面硬度为64.2 HRC,渗碳层深度为0.86 mm;并得到由针状回火马氏体、少量残留奥氏体和弥散分布的点状碳化物组成的渗碳层组织和由低碳板条状回火马氏体组成的心部组织,不仅使得表面获得高硬度,同时保证了心部的强韧性。 相似文献
16.
通过显微硬度仪、冲击试验机、万能试验机和扫描电镜等研究了不同热处理工艺下某过共析轨钢组织和性能的变化规律。结果表明:热处理工艺对该轨钢的组织和力学性能较轧制态和厂方热处理态均有所优化和提高,影响因素主要为冷却速率和等温时间。随着冷却速率的提升和等温时间的减少,基体中渗碳体析出增多,珠光体尺寸减小,大片层珠光体逐渐消失;此外,试验钢的硬度、冲击吸收能量和抗拉强度均随冷速的增大呈现先增加后降低的“折线形”变化趋势,拉伸断口粗糙度增加,断裂类型从解理断裂过渡为准解理断裂。而冲击吸收能量则随着等温时间增加而增加。最佳热处理工艺为:等温温度630 ℃,等温时间30 s,冷却速率8 ℃/s,对应的最优力学性能表现为硬度402 HBW、冲击吸收能量(KV2)2.9 J、抗拉强度1312 MPa、伸长率12.24%和断面收缩率23.96%。 相似文献
17.
利用Gleeble-3500热模拟试验机、光学显微镜和拉伸试验机分析研究了连续退火工艺中均热温度、缓冷温度和过时效温度对DP980钢力学性能及组织的影响。结果表明:随着均热温度的升高DP980钢组织中马氏体含量逐渐增加,规定塑性延伸强度和抗拉强度也随之提高,经分析选取780 ℃为最优均热温度。研究缓冷温度对DP980双相钢力学性能的影响,结合连退产线设备控制能力,选取670 ℃为最优缓冷温度。此外,过时效温度对DP980钢规定塑性延伸强度具有较大调整幅度,能够显著降低其屈强比,随着过时效温度的升高,DP980钢组织中马氏体含量基本不变并伴有少量的碳化物析出,能够降低马氏体的强度即改善双相钢塑性。最终确定均热温度780 ℃、缓冷温度670 ℃和过时效温度320 ℃的最优工艺参数。 相似文献
18.
利用热膨胀仪、拉伸试验机、金相显微镜以及扫描电镜对挖掘机铲斗用钢的相变点、力学性能和微观组织进行了研究,分析了热处理工艺对力学性能的影响。结果表明,挖掘机铲斗用钢在10℃/s的加热速度下,其Ac1和Ac3分别为776℃和832℃;屈服强度在700 MPa以上,抗拉强度在900 MPa以上,伸长率在13%以上;微观组织为回火索氏体,细小弥散的碳化物分布其上。热处理第一次正火温度在820~860℃之间,第二次正火温度在850℃附近为宜,在450~550℃区间回火都有比较好的力学性能,回火时间不宜小于6 h。 相似文献