共查询到20条相似文献,搜索用时 0 毫秒
1.
报道了一个高功率全光纤结构的中红外超连续谱激光源,该光源由1.55μm纳秒脉冲掺铒光纤激光器、包层抽运掺铥光纤放大器以及单模ZBLAN光纤组成。首先利用单模光纤将1.55μm纳秒脉冲激光频移至2.0μm波段,然后利用掺铥光纤放大器对其进行功率放大,最后利用ZBLAN光纤使掺铥光纤放大器输出的光谱进一步向中红外长波长方向扩展。当掺铥光纤放大器输出功率为3.95W时,ZBLAN光纤产生了2.2W的中红外超连续谱激光输出,相应的光谱范围为1.9~3.75μm,10dB光谱带宽大于1600nm。此外,通过增加掺铥光纤放大器的平均输出功率,中红外超连续谱的输出功率得到了进一步提高,当耦合进单模ZBLAN光纤的平均功率为21W时,中红外超连续谱的平均输出功率达到了16.2W,相应的光谱范围为1.9~3.5μm。 相似文献
3.
超快光纤激光器具有紧凑性高、光束质量佳、散热性好等优点,是一种极具发展潜力的激光光源。工作波长作为超快光纤激光器的重要参数,在一定程度上决定了激光器的应用领域。近年来,得益于1.7 μm波段的独特光谱特性,1.7 μm波段超快光纤激光器在生物医学、聚合物加工、光学成像等领域具有重要的应用价值。因此,研制高性能的1.7 μm波段超快光纤激光器成为激光领域的研究热点之一。文中综述了近期1.7 μm波段超快光纤激光器的研究进展,对目前获得1.7 μm波段超短脉冲的不同方式进行总结,分析其技术特点;同时,介绍了笔者所在课题组报道的1.7 μm波段耗散孤子超快光纤激光器及其放大系统的研究成果,概述了其工作原理、技术难点;最后,对1.7 μm波段超快光纤激光的应用前景及发展趋势进行了展望。 相似文献
4.
中红外超短脉冲激光是国际研究热点,它在激光微创治疗、聚合物精细加工、高次谐波产生、强场激光物理、超快分子成像等领域具有重要的应用前景,而锁模是产生超短脉冲的重要技术手段。本文围绕氟化物光纤激光器,从稀土离子中红外激光激射过程出发,对该波段目前常用的三种锁模方式(包括材料可饱和吸收、非线性偏振旋转、频移反馈)的工作机理、发展现状以及存在问题进行了介绍、分析与总结,并对中红外锁模光纤激光器的发展趋势进行了展望。 相似文献
5.
6.
范品忠 《激光与光电子学进展》2001,(3):45-47
1 引言由于紧凑和高效激光器最近的发展 ,高功率激光器在工业和医学领域的应用已快速扩展。然而大多数高功率激光有一严重的缺点 :因为石英玻璃的吸收损耗 ,普通石英玻璃光纤不能用作这些激光的传输媒质。空心光纤由金属包层和空气芯组成 ,对从紫外到红外很宽的光谱范围高度透明。因此空心光纤适于传输玻璃光纤不能传输的高功率激光。本文介绍用于红外激光的空心光纤研究的最新成果。2 空心光纤原理空心光纤是由空气或隋性气体芯和吸收包层组成的细管。从光学角度考虑 ,在芯中传输的光在芯与包层界面被反射。与光在普通光纤中传输相比 ,当… 相似文献
7.
8.
近十年来,超强超短脉冲是激光光学发展的一个重要趋势。尤其是在中红外(MIR)波段,由于中红外波长具有更大的有质动力并且其光谱范围几乎包含了所有分子“指纹”共振峰,这使得中红外激光的研究在强场物理、中红外光谱学、材料加工以及生物医学研究等领域中至关重要。目前已经有许多比较成熟的激光技术可以对脉冲进行整形、放大,例如差频(DFG)、啁啾脉冲放大(CPA)、光学参量放大技术(OPA)以及光学参量啁啾脉冲放大(OPCPA)等。利用OPCPA技术具有的高放大增益、高信噪比、宽增益带宽的优点在高非线性系数的非线性晶体中进行脉冲放大已经成为当前获取超强超短中红外脉冲的主要手段之一。文中总结了利用OPCPA技术在2~20 μm波长范围内产生和放大MIR少周期脉冲的研究进展,并对其在强场物理、分子频谱探测以及生物医学方面的应用进行了简要的阐述。 相似文献
9.
报道了一个全光纤结构的高功率超连续谱激光光源。利用自行搭建的环形腔掺镱脉冲光纤激光器作为种子源,采用三级MOPA功率放大,得到了平均功率为62W,中心波长为1 065 nm,3 dB谱宽15 nm,重复频率为118 MHz的皮秒锁模脉冲输出,将其耦合进零色散波长为1 040 nm的光子晶体(PCF),最终得到平均功率为28 W,谱宽覆盖范围为600~1 700 nm的超连续谱激光输出,超连续谱的光-光转换效率为45%。实验解决了高功率下大芯径掺杂光纤与PCF的耦合效率低的问题。 相似文献
10.
高功率飞秒脉冲光纤激光系统 总被引:1,自引:0,他引:1
基础科学研究和超精细工业加工领域的发展迫切需要高重复频率、高功率的飞秒脉冲激光。采用啁啾脉冲放大技术,以掺镱双包层光子晶体光纤作为增益介质,搭建了高平均功率飞秒脉冲光纤激光系统。系统包括被动锁模振荡器、脉冲展宽器、单模光纤预放大器、光子晶体光纤功率放大器和脉冲压缩器5部分。实验上获得了重复频率40 MHz、平均功率150 W、脉冲宽度273 fs的超短脉冲输出。整个系统置于3 m×1.5 m的光学平台上,通过模块化和集成化的改进,该系统体积有望大幅度减小,为科学研究和工业应用提供有力工具。 相似文献
11.
12.
13.
依托闭腔式氟化氘中红外高能激光器,测量了元件表面污染物在连续波高能激光(3.16 k W/cm2)辐照下的温度,测量发现污染物在1s内达到了热平衡,温度维持在1 720 K;建立了描述强光辐照下污染物热平衡过程的物理模型,分析了污染物导致强光元件热损伤的物理机制;研究发现污染物的尺度对强光元件的热损伤具有重要影响.对于中红外高反射强光光学元件,若污染物的尺度小于20μm一般不会造成强光元件的损伤,若污染物的尺度大于200μm一般会导致强光元件的损伤.研究结果对于提高强光元件的抗损伤性能,保障中红外高能激光系统稳定运行具有重要意义. 相似文献
14.
15.
16.
波长在1.8~2.3μm之间的高功率二极管激光器有许多新应用,如材料加工、加速烘干、外科手术、红外对抗及用于泵浦固态和半导体碟片激光器。本文给出了MBE生长的量子阱(AlGaIn)(AsSb)二极管激光器的结果,其单发射器的宽度在90~200μm之间;还对具有20%或30%填充因子的激光器靶条进行了一定处理。单发射器和激光靶条在连续工作时最大电光转换效率超过30%,在2200nm时一个30%填充靶条的功率甚至超过了15W。由于对这些中红外激光器的脉冲工作模式的研究持续升温,本文研究了不同脉冲时间和占空比的1940nm单发射器和激光器靶条。没有COMD的单发射器在电流为30A、脉冲时间为500ns、占空比为1%时功率超过9W。以前,大多数应用都需要光纤耦合输出功率,因此,对基于单发射器或激光靶条的光纤耦合模块进行了研制。基于单发射器的模块在波长为1870~1940nm之间时,在200μm芯径、NA=0.22时的耦合输出为600mW。在2200nm的输出功率为450mW,更值得一提的是基于GaSb的二极管激光器的输出波长超过2μm。几个激光靶条结合,600μm芯径光纤在1870nm输出激光20W。最后,我们在1870nm采用7靶条得到了50A准连续模式下的功率超过85W。 相似文献
17.
飞秒激光在工业加工、精密测量、军事国防、科学研究等领域具有广阔的应用前景。报道了基于光谱控制与色散优化的高功率、高脉冲质量飞秒啁啾脉冲放大系统。利用与压缩器色散量相匹配的色散可调啁啾布拉格光纤光栅(CFBG)作为展宽器,通过微调CFBG色散量补偿系统的残余色散使整个系统的净色散趋于零;同时引入光谱滤波等手段,保证入射到主放大器之前的脉冲光谱形状不发生畸变,避免了放大过程中脉冲质量的劣化。最终获得了重复频率为50 MHz、平均功率为24 W、脉冲宽度为198 fs的高脉冲质量飞秒激光输出。 相似文献
18.
基于差频产生的中红外飞秒光源具有波长调谐范围宽(6~20 μm)、覆盖范围广(整个“指纹区”)和系统复杂程度低等优势,超快光纤激光器驱动的中红外飞秒光源只有差频部分采用了空间光路,进一步提高了系统的稳定性。文中介绍基于超快光纤激光器驱动的光学差频产生长波中红外飞秒脉冲的技术路线,阐述在差频过程中如何通过非线性光纤光学技术(包括超连续谱产生、孤子自频移和光谱滤波技术)产生合适的信号脉冲,并从理论上详细介绍差频过程中提高中红外脉冲功率的方法。 相似文献
19.
搭建了基于声光调Q种子源的主振荡高功率放大(MOPA)系统。采用自主设计和制备的大模场双包层(100μm/400μm)有源光纤,通过两级放大,在重复频率为60 kHz、脉冲宽度为150 ns的条件下实现了平均功率为1000 W的脉冲输出,斜率效率为72.5%,光谱显示无剩余泵浦光和寄生振荡,同时没有受激拉曼散射效应。此时的脉冲宽度展宽到260 ns,单脉冲能量为16.7 mJ。这是采用国产光纤实现脉冲激光器平均功率突破1000 W的首次报道。 相似文献
20.
利用超快光纤激光器产生皮秒或飞秒光脉冲是当今世界最活跃的研究领域之一.尽管人们已经成功研制出了利用超快锁模激光器产生皮秒和飞秒光脉冲的技术,但这项技术仍局限于实验室和高端应用. 相似文献