共查询到20条相似文献,搜索用时 140 毫秒
1.
采用钢/钛/隔离剂/钛/钢对称结构复合板坯,研究了轧制加热温度(850-1000℃)对钛/钢复合板显微组织、基材强韧性和界面结合性能的影响。结果表明,随着轧制加热温度的升高,界面剪切性能逐步下降。加热温度影响着界面反应相的种类和厚度。在850,875,900℃条件下,轧后冷却扩散过程中,C极容易在钛/钢界面形成TiC层,阻碍了Fe向Ti中扩散,因而界面形成TiC和β-Ti反应层;在950℃和1000℃条件下,由于C在β-Ti中的扩散系数为C在γ-Fe扩散系数的10倍以上,C不能在结合界面富集形成有效的TiC屏障,此时Fe能够在Ti中充分扩散,从而形成了Fe-Ti金属间化物层、TiC层、β-Ti层和α-β Ti层。脆性反应相的厚度与加热温度呈正相关关系。脆性相种类和厚度增加使得钛/钢复合板界面剪切强度出现下降。 相似文献
2.
对比两组冲击吸收能量差别较大的贝氏体高强钢试样,采用光学显微镜、扫描电子显微镜SEM结合电子背散射衍射(EBSD)分析了显微结构对钢的冲击性能的影响。结果表明,钢基体中存在尺寸在3~6μm的(Ti,Nb)(N,C)析出物导致脆断断裂。冲击吸收能量偏低试样在厚度的1/4和1/2处平均有效晶粒尺寸都明显大于冲击吸收能量较高试样,会导致材料的冲击性能降低。同时冲击吸收能量偏低试样的小角度晶界所占比例明显偏高,而在断裂过程中不能有效阻止裂纹扩展,因此也会导致钢的冲击性能降低。 相似文献
3.
采用热模拟试验、力学性能测试及显微分析技术研究了加热温度对X100热煨弯管钢组织和强韧性的影响.结果表明:随着加热温度的升高,X100钢的强度呈现增加的趋势,而冲击韧性为下降的趋势.在950~1050℃的加热温度范围内,试验钢获得了以贝氏体铁素体和粒状贝氏体为主的组织形态,由于贝氏体铁素体和粒状贝氏体的微观组织结构为细小的、多位向分布和高位错密度的铁素体板条束,因而钢获得了较好的强韧性配合.当加热温度高于1050℃时,试验钢中贝氏体铁素体的晶粒尺寸明显长大,韧性明显下降.当加热温度低于950℃时,试验钢显微组织出现部分多边形铁素体,从而使得试验钢的强度降低. 相似文献
4.
以多向锻造AZ31镁合金为板坯进行高应变速率轧制成形,研究轧制温度对板材组织与力学性能的影响。结果表明:镁合金高应变速率轧制成形前期,孪生作用增强,形成大量的■拉伸孪生和■二次孪生;变形后期,由于孪生诱发动态再结晶的作用,合金晶粒组织明显细化。在压下量为80%的高应变速率轧制下,轧制温度为250~400℃时,轧制板材组织均发生了完全再结晶,平均晶粒尺寸随着轧制温度的升高从6.97μm增加至8.13μm,但由于轧制板坯的初始晶粒尺寸较小,晶粒尺寸随着轧制温度的升高变化较小;轧制板材的抗拉强度和伸长率均高于315 MPa和25%,表明高应变速率轧制工艺可以在较宽的温度区间内制备力学性能稳定的镁合金板材。 相似文献
5.
利用光学显微镜、扫描电镜及电子背散射衍射仪等测试手段研究了轧制温度对固溶态AZ31镁合金显微组织的影响,采用浸泡失重实验和电化学测试等研究了合金在3.5 mass%NaCl溶液中的腐蚀行为.结果表明:轧制温度在250~300℃时,随着轧制温度的升高,合金的动态再结晶程度与均匀性提高,腐蚀速率降低.当轧制温度为300℃时,合金得到了均匀的再结晶晶粒,浸泡12天的平均腐蚀速率为1.37×10-3g.cm-2·d-1,呈现均匀腐蚀形貌,耐腐蚀性能最优.当轧制温度为350~400℃时,出现了动态再结晶晶粒长大现象,造成随着轧制温度的升高而腐蚀速率加快的情况. 相似文献
6.
采用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、电子背散射(EBSD)、拉伸试验及断裂韧性试验等研究了奥氏体化加热温度对钒微合金中碳钢珠光体等温转变组织特征及强韧性的影响。结果表明:随加热温度的提高,实验钢的强度先大幅提高,在930℃时达到最大后略降。890℃时原奥氏体晶粒尺寸(AGS)细小且均匀,当加热温度为930℃及以上时,AGS显著增大且不均匀,珠光体团尺寸(PCS)的变化趋势与AGS一致。PCS对断裂韧性K_Q值的影响可用式K_Q=196.578-16.876PCS来表达。断口分析表明,珠光体团界对解理滑移带起约束作用,减小珠光体团尺寸对韧性优化有利。合理选取加热温度,控制含钒沉淀相的溶解比例,是获取较理想的组织参量及强韧性匹配的关键。 相似文献
7.
8.
9.
针对新一代低碳铌微合金化Q370qE-HPS高性能桥梁钢的生产,为了兼顾钢坯加热时Nb的溶解与原始奥氏体晶粒的细化以实现成品钢板良好的综合性能,借助热力学计算、模拟加热、组织观察等方法,研究了加热温度对Nb的溶解-析出行为与含Nb第二相粒子的影响,以及对原始奥氏体晶粒的影响,并据此来优化加热温度制度。结果表明,随着加热温度的升高,Q370qE-HPS钢中Nb的固溶量增加、原始奥氏体晶粒长大;加热温度为1 200 ℃时,Nb的溶解量超过80%、原始奥晶粒尺寸小于100 μm,是理想的加热温度。 相似文献
10.
11.
研究了热轧工艺对20MnMoB钢奥氏体晶粒度的影响,结果表明,试验用钢的奥氏体晶粒粗化温度随压下率增大而降低,热轧温度对试验用钢的奥氏体晶粒粗化度影响较小。 相似文献
12.
13.
原奥氏体晶粒度对45V非调质钢连续冷却转变的影响 总被引:2,自引:0,他引:2
采用FormastorF热膨胀分析仪及金相显微镜研究了原奥氏体晶粒度对45V非调质钢相变点及显微组织的影响。结果表明,在相同的冷速下,相变前奥氏体晶粒尺寸越大,先共析铁素体量越少,先共析铁素体和珠光体转变温度越低 相似文献
14.
通过全自动相变仪、光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)等,研究880~1100 ℃淬火温度对30 mm厚Q690D钢显微组织、原始奥氏体晶粒尺寸、-20 ℃低温冲击性能和冲击断口形貌的影响。结果表明,当淬火温度低于950 ℃时,试验钢奥氏体平均晶粒尺寸小于10 μm,随着淬火温度的升高,Nb、V、Ti微合金碳化物溶入奥氏体量增加,-20 ℃低温冲击吸收能量逐渐升高;当淬火温度由950 ℃升高至1100 ℃,随着奥氏体晶粒快速长大,试验钢-20 ℃冲击吸收能量由最大值150 J降低至19 J;Q690D钢的最佳淬火工艺为950 ℃×20 min,水冷。 相似文献
15.
钛含量对20MnMoB钢奥氏体晶粒度及晶粒粗化温度的影响 总被引:1,自引:0,他引:1
研究了钛含量对20 Mn Mo B钢奥氏体晶粒度及奥氏体晶粒粗化温度的影响。结果表明,有效钛( Tie)是决定20 Mn Mo B钢奥氏体晶粒度和晶粒粗化温度的主要参数。随( Tie)含量增加,试验用钢的奥氏体晶粒尺寸减小,晶粒粗化温度提高。当 Tie 超过0.037% 时,钢的奥氏体本质晶粒度可达7 级以上,晶粒粗化温度提高到1 000℃以上。 相似文献
16.
利用冷弯试验机、光学显微镜、扫描电镜等研究手段,分析了热冲压成形工艺过程中的加热保温时间对1800 MPa级热成形钢微观组织和冷弯性能的影响。结果表明,随保温时间的增加,试验钢热冲压成形后的原始奥氏体晶粒长大,当保温时间为5 min时,原始奥氏体晶粒尺寸约为5 μm,细小且均匀,当保温时间达到9 min时,出现异常粗大晶粒。冷弯角与原始奥氏体晶粒尺寸关系密切,冷弯角随着晶粒的长大而减小,在5 min时获得最大冷弯角54.5°。 相似文献
17.
对中锰钢中原奥氏体晶粒尺寸对马氏体相变动力学的影响进行了分析.利用SEM、XRD、热膨胀相变仪和EBSD等检测手段,研究了不同原奥氏体晶粒尺寸下马氏体相变速率和马氏体板条组织的变化.通过不同温度的奥氏体化处理,分别得到了尺寸为(190±15)、(36±2)、(11±2)和(4.8±2)μm的原奥氏体晶粒.结果表明:随着... 相似文献
18.
19.
研究了控轧控冷工艺参数中冷却速度和未再结晶区不同压下量对低合金钢的组织和性能的影响。结果表明,当提高未再结晶区的累计压下量时,使钢的晶粒得到细化、强度和韧性有较大提高。轧后冷却速度控制在5-12为宜。 相似文献