首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 91 毫秒
1.
为解决市民口罩佩戴目标检测中因小尺寸目标较多导致其识别精度不高的问题,提出一种基于YOLOv3改进的算法M_YOLOv3.重构特征金字塔机制,把原本3*3的类金字塔结构扩建为4*4尺寸,把先验框数量由9增加到16,通过以上方法降低神经网络感受野,增强M_YOLOv3对小尺寸目标的敏感度.将原有的损失函数IoU替换为DI...  相似文献   

2.
新冠疫情仍在全球肆虐,佩戴口罩可以有效阻断新冠病毒传播,口罩佩戴检测系统能及时提醒公共场所活动的人佩戴口罩。针对该问题及小尺度目标检测困难的问题,提出了一种基于YOLOv3改进的网络模型Face_mask Net用于口罩佩戴检测。由于YOLOv3算法训练的网络模型对小目标检测率低,IoU值相同时不能反映预测框和目标框是否相交,以及传统NMS对于遮挡经常产生错误抑制情况,Face_mask Net改进了残差块和神经网络结构,引入SPP模块和CSPNet网络模块,并采用DIoU作为损失函数,DIoU-NMS算法作为分类器。实验结果表明,Face_mask Net可以有效提高目标检测准确率,AP75下的平均准确率为58.05%,相比由YOLOv3算法训练的网络模型提高了4.11%。  相似文献   

3.
为了解决传统施工现场安全管理的弊端,减少因施工人员未佩戴安全帽造成的人员伤亡,本文提出一种基于深度学习的安全帽佩戴检测与跟踪方法。首先通过深度学习YOLOv3目标检测网络实现安全帽佩戴检测,进一步运用卡尔曼滤波器和KM算法实现多目标跟踪与计数。复杂施工现场的测试结果表明:网络模型的检测速度可达45 fps,平均精确度为93%,且未佩戴安全帽的查准率和查全率分别为97%和95%,基本能够实现安全帽佩戴情况的实时检测。  相似文献   

4.
肖俊杰 《软件》2020,(7):164-169
2020年初,新冠病毒席卷全球,为防止其传播,在很多公共场合要求佩戴口罩。利用计算机视觉检测人脸是否佩戴口罩以及识别是否佩戴规范,可以避免检测人员与他人接触感染的风险且更加高效。针对人脸口罩检测问题,提出了基于YOLOv3的目标检测算法,实现对佩戴口罩的人脸和未佩戴口罩的人脸的检测。针对口罩规范佩戴识别问题,则基于前者检测结果,提取佩戴口罩的人脸区域,利用YCrCb的椭圆肤色模型对该区域进行肤色检测,依据人脸中鼻和嘴周围区域的皮肤暴露状况来判断口罩是否佩戴规范。实验结果表明,人脸口罩检测的mAP达到89.04%,口罩规范佩戴的识别率达到82.48%,满足实际应用的需求。  相似文献   

5.
人脸口罩佩戴检测是近两年在全球新冠疫情背景下快速发展的一个新兴研究课题。疫情常态下,佩戴口罩是有效防疫的重要手段,因此公共场所下对人员是否佩戴口罩的检查与提醒必不可少。利用人工智能完成口罩佩戴检测工作可以达到实时监督的目的,节省人力资源,有效避免误检、漏检等问题。对当前口罩佩戴检测研究所使用的网络模型和相关算法进行了详细梳理。针对口罩佩戴检测任务及其应用背景进行了简要说明;重点总结和分析了基于深度神经网络和基于目标检测模型两种思路的检测算法,主要讨论了不同研究方案的优缺点、改进方法和适用场景;介绍了常用的相关数据集,对比展现了各算法检测性能;对仍然存在的问题以及未来发展的方向进行了探讨和展望。  相似文献   

6.
在火车站等公共场合采集乘客图像时,由于运动模糊和光线问题,导致图像的质量受影响。为了提高检测口罩检测的准确率,从图像的复原和亮度修正两方面进行改进。首先,采用改进的维纳滤波算法对火车站乘客的模糊图像进行处理和复原。其次,将图像进行两次颜色空间转换,同时使用同态滤波算法对亮度进行调整,解决图像存在的光线过亮或过暗的问题。最后,对YOLOv4的网络参数进行调整,使用YOLOv4算法分别对原始的数据集和去模糊、修正亮度后的数据集进行训练和测试。试验结果表明,经过图像复原和亮度修正的数据集,相比于原始数据集,训练出来的模型更为优秀,平均检测精度最高提升了7.25%。不仅提高了口罩佩戴检测的准确率,而且满足了实时检测的需要。  相似文献   

7.
本文提出了一种基于YOLOx的口罩佩戴检测方法。该方法首先对输入模块进行改进,加入双向弱光自适应网络模块,引入弱光特征,增强了模型在复杂环境下检测的鲁棒性。其次,增加了各种遮挡下的口罩佩戴检测,提高复杂环境下目标的识别精度。最终,为了测试检测效果,在佩戴口罩数据集上进行对比实验。实验结果表明,改进后的算法在实验数据集上将口罩佩戴检测mAP提高了约1.35%、达到了94.75%,而且在复杂环境和弱光环境下的检测效果也得到了较好的提升,具有较强的泛化能力。  相似文献   

8.
面对疫情防控的实际需求,关于利用信息技术提高疫情防控效率的探索成为行业关注的焦点。综合利用深度学习视觉分类技术和无线测温技术,设计了一种口罩佩戴检测和无接触测温预警的一体化疫情防控系统。系统中采用目标检测模型YOLO设计了口罩佩戴检测和无线测温模块,实现对目标人群的无接触测温;通过PyQt进行了系统集成,一体化系统的设计和实现有效提高了疫情防控效率。系统有较高的精度和较为广泛的适用性,具有较好的应用前景。  相似文献   

9.
为解决YOLOv4在目标检测任务中检测速度低、模型参数多等问题,提出一种改进YOLOv4的目标检测算法。将YOLOv4主干网络中的CSPDarknet53替换成Mobilenet用以增强YOLOv4的特征提取网络,PANet原有的3×3标准卷积被深度可分离卷积取代,以降低计算负荷,从而提高识别速度,减少模型参数。然后使用K-means+〖KG-*3〗+算法对由8565张图像组成的数据集进行anchor维度聚类,以提升算法精度。同时,搭建行人口罩佩戴及人体测温拍摄系统用以在人群密集场所中执行疫情防控任务。在保证YOLOv4-Mobilenet网络精度的前提下,相较于原算法FPS提升200%、模型参数减少82%。改进后的模型平均每秒可检测67张图片,可以胜任实际应用中的口罩佩戴检测任务,结果表明该模型检测效果好、鲁棒性较强。  相似文献   

10.
11.
针对机器学习领域的人脸跟踪研究,其人脸首帧初始化由人工手动标注的问题,提出了一种基于深度学习的人脸跟踪自动初始化首帧方法。通过建立栈式稀疏自编码神经网络,对大量未标注的样本采用近似恒等的方法计算各隐层节点并运用反向传播法进行权值微调。预训练网络之后,连接softmax分类器,再用少量已标注样本对softmax分类器进行有监督训练,从而形成一个能进行人脸跟踪首帧自动初始化的分类器。结果表明,该方法显著提高了人脸跟踪中首帧初始化的效率,识别准确率达到92%,基本满足了人脸首帧自动初始化的要求。  相似文献   

12.
在空地协同背景下,地面目标的移动导致其在无人机视角下外观会发生较大变化,传统算法很难满足此类场景的应用要求。针对这一问题,提出基于并行跟踪和检测(PTAD)框架与深度学习的目标检测与跟踪算法。首先,将基于卷积神经网络(CNN)的目标检测算法SSD作为PTAD的检测子处理关键帧获取目标信息并提供给跟踪子;其次,检测子与跟踪子并行处理图像帧并计算检测与跟踪结果框的重叠度及跟踪结果的置信度;最后,根据跟踪子与检测子的跟踪或检测状态来判断是否对跟踪子或检测子进行更新,并对图像帧中的目标进行实时跟踪。在无人机视角下的视频序列上开展实验研究和对比分析,结果表明所提算法的性能高于PTAD框架下最优算法,而且实时性提高了13%,验证了此算法的有效性。  相似文献   

13.
单目标跟踪是一种在视频中利用目标外观和上下文信息对单个目标分析运动状态、提供定位的技术,在智能监控、智能交互、导航制导等方面具有应用前景,但遮挡、背景干扰、目标变化等问题导致实际应用的进展缓慢.随着近年来深度学习的快速发展,研究使用深度学习技术优化单目标跟踪算法已成为计算机视觉领域的热点之一.围绕基于深度学习的单目标跟踪算法,在分析了单目标跟踪的基本原理基础上,从相关滤波、孪生网络、元学习、注意力、循环神经网络和生成对抗网络六个方面,根据核心算法的不同分别进行了概述和分析;此外,对研究现状进行了总结,提出了算法的发展趋势和优化思路.  相似文献   

14.
目标跟踪是利用一个视频或图像序列的上下文信息,对目标的外观和运动信息进行建模,从而对目标运动状态进行预测并标定目标位置的一种技术,是计算机视觉的一个重要基础问题,具有重要的理论研究意义和应用价值,在智能视频监控系统、智能人机交互、智能交通和视觉导航系统等方面具有广泛应用。大数据时代的到来及深度学习方法的出现,为目标跟踪的研究提供了新的契机。本文首先阐述了目标跟踪的基本研究框架,从观测模型的角度对现有目标跟踪的历史进行回顾,指出深度学习为获得更为鲁棒的观测模型提供了可能;进而从深度判别模型、深度生成式模型等方面介绍了适用于目标跟踪的深度学习方法;从网络结构、功能划分和网络训练等几个角度对目前的深度目标跟踪方法进行分类并深入地阐述和分析了当前的深度目标跟踪方法;然后,补充介绍了其他一些深度目标跟踪方法,包括基于分类与回归融合的深度目标跟踪方法、基于强化学习的深度目标跟踪方法、基于集成学习的深度目标跟踪方法和基于元学习的深度目标跟踪方法等;之后,介绍了目前主要的适用于深度目标跟踪的数据库及其评测方法;接下来从移动端跟踪系统,基于检测与跟踪的系统等方面深入分析与总结了目标跟踪中的最新具体应用情况,最后对深度学习方法在目标跟踪中存在的训练数据不足、实时跟踪和长程跟踪等问题进行分析,并对未来的发展方向进行了展望。  相似文献   

15.
邵江南    葛洪伟   《智能系统学报》2021,16(3):433-441
针对长时目标跟踪所面临的目标被遮挡、出视野等常常会导致跟踪漂移或丢失的问题,基于MDNet提出一种深度长时目标跟踪算法(long-term object tracking based on MDNet, LT-MDNet)。首先,引入了一种改进的收缩损失函数,以解决模型训练时正负样本不均衡的问题;其次,设计了一种高置信度保留样本池,对在线跟踪时的每一帧的有效并且置信度最高结果进行保留,并在池满时替换最低置信度的保留样本;最后,在模型检测到跟踪失败或连续跟踪帧数达到特定阈值时,利用保留样本池进行在线训练更新模型,从而使模型在应对长时跟踪时保持鲁棒和高效。实验结果表明,LT-MDNet在跟踪精度和成功率上都展现了极强的竞争力,并且在目标被遮挡、出视野等情况下保持了优越的跟踪性能和可靠性。  相似文献   

16.
随着人工智能与教育的不断发展,知识追踪在智慧教学领域具有广阔的应用前景;深度学习以其强大特征提取能力广泛应用于知识追踪,以深度学习知识追踪模型为起点,其改进模型为主线,全面回顾了知识追踪模型的研究进展,简要介绍了知识追踪领域传统模型的特点及不足,阐述了基于深度学习知识追踪模型的原理及局限性,同时全面整理并分析了针对可解释性问题、缺少学习特征、记忆增强网络、图神经网络、基于注意力机制五个方面的改进模型,梳理了知识追踪领域常用的公开数据集、评价指标及模型性能对比分析,最后总结并探讨了知识追踪在智慧教学方面的应用以及当前该研究领域的研究现状与未来的研究方向。  相似文献   

17.
针对传统检测方法受到复杂环境和人工干预影响而导致检测精准度低的问题,提出了基于CNN深度学习的机器人抓取位置检测方法。根据CNN基本结构,研究基于CNN深度学习检测原理。按照切线斜率方向划分机器人抓取位置模板点,计算模板匹配距离,得到机器模板上匹配点到边缘坐标图像点中最近的距离。保持横纵坐标变量保持不变,观察映射图上坐标灰度值及匹配度函数分布情况。引入GA求解匹配方法,根据匹配流程,寻找最优解。分析彩色图像、深度图像的可抓取位置和不可抓取位置信息,并将其转化为符合CNN深度学习的数据格式,完成信息预处理。根据机器人抓取作业示意图,设计具体检测流程,并显示检测结果,由此完成机器人抓取位置检测。由实验结果可知,该方法检测精准度最高可达到0.988,能够应用到实际机器人抓取相关任务之中。  相似文献   

18.
针对无人机对目标的识别定位与跟踪,本文提出了一种基于深度学习的多旋翼无人机单目视觉目标识别跟踪方法,解决了传统的基于双目摄像机成本过高以及在复杂环境下识别准确率较低的问题。该方法基于深度学习卷积神经网络的目标检测算法,使用该算法对目标进行模型训练,将训练好的模型加载到搭载ROS的机载电脑。机载电脑外接单目摄像机,单目摄像头检测目标后,自动检测出目标在图像中的位置,通过采用一种基于坐标求差的优化算法进行目标位置准确获取,然后将目标位置信息转化为控制无人机飞行的期望速度和高度发送给飞控板,飞控板接收到机载电脑发送的跟踪指令,实现对目标物体的跟踪。试验结果验证了该方法可以很好的进行目标识别并实现目标追踪  相似文献   

19.
目的 基于深度学习的视觉跟踪算法具有跟踪精度高、适应性强的特点,但是,由于其模型参数多、调参复杂,使得算法的时间复杂度过高。为了提升算法的效率,通过构建新的网络结构、降低模型冗余,提出一种快速深度学习的算法。方法 鲁棒特征的提取是视觉跟踪成功的关键。基于深度学习理论,利用海量数据离线训练深度神经网络,分层提取描述图像的特征;针对网络训练时间复杂度高的问题,通过缩小网络规模得以大幅缓解,实现了在GPU驱动下的快速深度学习;在粒子滤波框架下,结合基于支持向量机的打分器的设计,完成对目标的在线跟踪。结果 该方法精简了特征提取网络的结构,降低了模型复杂度,与其他基于深度学习的算法相比,具有较高的时效性。系统的跟踪帧率总体保持在22帧/s左右。结论 实验结果表明,在目标发生平移、旋转和尺度变化,或存在光照、遮挡和复杂背景干扰时,本文算法能够实现比较稳定和相对快速的目标跟踪。但是,对目标的快速移动和运动模糊的鲁棒性不够高,容易受到相似物体的干扰。  相似文献   

20.
陈昭俊  储珺  曾伦杰 《图学学报》2022,43(4):590-598
公共场合佩戴口罩已经成为重要的防疫措施。现有口罩检测方法通常只检测是否佩戴口罩,忽略检测未规范佩戴口罩这一极易发生交叉感染的场景,目前的口罩数据集缺少未规范佩戴口罩数据。针对以上问题,在现有口罩数据集的基础上,通过线下采集和从互联网收集更多未规范佩戴口罩图像,并根据佩戴口罩的人脸图像特点,改进 Mosaic 数据增强算法扩充数据,改进后 Mosaic 数据增强算法能够将基准网络 YOLOv4的平均精度均值(mAP)提升 2.08%;针对扩增后数据集出现的类别不平衡问题,提出动态加权平衡损失函数,在重加权二分类交叉熵损失(weight binary cross entropy loss)基础上,以有效样本数量的倒数作为辅助类别权重,并对训练的每一个批次进行动态调整,解决直接使用重加权方法稳定性弱、检测精度震荡和效果不理想的问题。实验表明,改进后模型 mAP 达到 91.25%,未规范佩戴口罩平均精度(AP)达到 91.69%,与单阶段方法 RetinaNet,Centernet,Effcientdet 和两阶段方法 YOLOv3-MobileNetV2,YOLOv4-MobileNetV2 相比,改进后算法具有更高的检测精度和速度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号