首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以5V高电压LiNi0.5Mn1 5O4为正极材料,高安全性Li4Ti5O12为负极材料制备了LiNi0.5Mn1.5O4/Li4Ti5O12全电池,重点研究了正负极容量配比对电池电化学性能的影响.其中正极容量过量40%的电池具有最好的倍率和循环性能,在0.5 C电流下,P/N=1.4的电池的最高放电比容量为164.1 mAh·g-1,循环200次的容量保持率为88%;在2C电流下,P/N=1.4的电池的最高放电比容量为135.2 mAh·g-1,循环740次的容量保持率为91.1%.P/N=1.4的电池良好的倍率和循环性能与其内阻较小、电池极化较小等因素有关.  相似文献   

2.
以乙炔为碳源,酒石酸铜为催化剂前躯体,氩气为保护气体,采用化学气相沉积法制备螺旋纳米炭纤维,通过扫描电镜观察不同温度下制备的螺旋纳米炭纤维的形貌;制备的螺旋纳米炭纤维作为锂离子电池负极材料,通过首次充放电、循环伏安、循环性能和交流阻抗谱测试电池的电化学性能。研究表明:在580℃下制备的螺旋纳米炭纤维管径均匀、螺旋化程度高,组装的电池具有最长的充放电平台,50次充放电循环后,库伦效率能保持在98.0%以上,比容量也保持在400 mA·h/g以上,循环伏安曲线重合性好,说明电化学性能稳定,电化学阻抗最小,导电性最好。螺旋纳米炭纤维纯度越高具有更好的电化学性能。  相似文献   

3.
以大鳞片石墨制备的膨胀石墨(EG)为原料,采用改进的Hummers法制备氧化石墨,采用Na BH4化学还原制备石墨烯。采用扫描电镜和X射线衍射仪对化学还原后的石墨烯进行形貌和结构表征,应用电池测试系统对样品进行循环伏安(CV)、恒流充放电等电化学性能测试。结果表明:石墨烯电极在电流密度100m A·g-1时的首次放电比容量达1900m Ah·g-1;经100个循环周期后石墨烯电极比容量为450m Ah·g-1;在不同电流密度下循环50次,再回到100m A·g-1时,仍保持首次循环92%的比容量。  相似文献   

4.
以聚甲基丙烯酸甲酯(PMMA)作为胶晶模板,溶胶凝胶法辅助制备出三维有序大孔Ni-Co-Mn混合金属氧化物作为锂离子电池负极材料.与相同组份的纳米颗粒相比,三维有序大孔材料具有大幅度提高的电化学性能.三维有序大孔材料具有高达1530 mAh·g-1的可逆容量,在1000 mA·g-1的电流密度下纳米颗粒材料的放电比容量仅为328 mAh·g-1,而多孔材料的放电比容量为876 mAh·g-1,比纳米颗粒材料提高了1.7倍;在100 mA·g-1电流密度下循环100圈之后多孔材料的容量保持率几乎接近100%,而纳米颗粒材料仅为42%.这些结果表明,三维有序大孔结构Ni-Co-Mn混合金属氧化物具有较高的容量和优异的循环性能.  相似文献   

5.
以2,2',7,7'-四频哪醇硼酸酯-9,9'-螺二芴、1,4-苯二硼酸和4,4'-二溴偶氮苯为聚合物中间体,采用钯催化的Suzuki-Miyaura偶联反应制备了2种含偶氮苯结构的共轭微孔聚合物Azo-SBF和Azo-PH,对聚合物的结构进行了表征,并研究了调节构筑单元后共轭微孔聚合物作为正极材料的聚合物的锂离子电池性能。结果表明,2种聚合物Azo-PH和Azo-SBF的BET比表面积分别为113 m2·g-1和446 m2·g-1,热力学分解温度均超过了400℃;100 m A·g-1的电流密度下对聚合物锂离子电池充放电特性测试表明,相比Azo-PH,Azo-SBF电极展现出10.226 m A·h·g-1的初始充电比容量和稳健的循环稳定性,800次充放电循环后,Azo-SBF仍然展现出9.333 m A·h·g-1的放电比容量。  相似文献   

6.
以Co(Ac)2·4H2O和Mn(Ac)2·4H2O为原料,乙二醇为溶剂,采用简单的一步水热法成功地合成了CoMn2O4微球。使用X射线衍射(XRD)和透射电子显微镜(TEM)对合成的产物进行物相和形貌分析。采用蓝电测试系统对产物进行电化学性能测试,结果表明,当CoMn2O4微球用作锂离子电池负极材料时,在电流密度为100mA·g-1的条件下,其首次放电容量为1056mAh·g-1,50次充放电循环后容量仍保持在611.7mAh·g-1左右并趋于稳定,呈现出良好的循环性能。  相似文献   

7.
魏庆玲  刘亚楼 《化工时刊》2021,35(12):8-10,59
本文以灵芝孢子粉作为原料,通过水解-活化两步法制备了生物质基电容炭,氮气吸附脱附分析结果表明,所制备的电容炭以微子为主,孔径主要分布在0.8~1.0 nm.循环伏安(CV)测试得到该电容炭的比容量为150.8 F·g-1(扫描速率为5 mV·s-1).在恒流充放电(GCD)测试中,当电流密度由0.5A·g-1增至20A·g-1,该电容炭的容量保持率为67.0%.较小的阻抗和良好的循环稳定性表明,该方法制电容炭具有一定的应用价值.  相似文献   

8.
在浓氢氧化钠溶液中,通过电化学方法氧化银纳米颗粒制备得到AgO有序阵列结构电极材料。性能表征表明,所制备的AgO材料具有独特的直通孔阵列结构,有利于电解质溶液在孔隙中的扩散,可直接用作Al/AgO电池阴极,无需黏结剂等。与常规AgO阴极材料相比,同等条件下,以AgO有序阵列结构材料为阴极所组成电池的放电性能大幅提高,3 C倍率下质量比容量可达422.6 m A·h·g-1,电极活性材料的利用率为97.8%,7 C倍率下质量比容量依然有387.8 m A·h·g-1,活性物质利用率89.7%。同时,循环性能相比传统电极也得到大幅提升,在第10个循环时依然保持着405.2 m A·h·g-1的质量比容量。制备方法易于操作且高效环保,有利于工业化生产;所得材料具有独特结构和性能优势。  相似文献   

9.
利用正交实验L33(9)探讨磷酸铁锂正极的制备工艺对不同倍率下电极工作性能的影响,并对电解液的匹配性进行研究.采用不同活性物质、导电剂和粘结剂配比制成磷酸铁锂正极,应用不同电解液组装成锂离子电池,选用17mA·g-1和170 mA·g-1的工作电流密度对电池进行充放电循环测试.研究结果表明,在17mA·-1倍率充放电条件下,最佳电极制备工艺是:活性物质、导电剂和粘结剂的质量百分比为85∶7∶8,匹配的电解液为LiPF6/EC-DEC-DMC(体积比1∶1∶1,浓度1mol·L-1);在170 mA·g-1倍率充放电条件下,活性物质、导电剂和粘结剂的最佳质量百分比为80∶12∶8,与其相匹配的电解液为LiPF6/EC-DMC(体积比1∶1,浓度1 mol·L-1).  相似文献   

10.
采用高温热解法制得Si/C/B2O3复合材料,并用XRD和XPS分析材料的物相结构和组成.以复合材料为锂离子电池电极进行恒流充放电测试,并通过循环伏安曲线和充放电曲线研究了材料的电化学反应特性.结果表明,复合材料中的硼以氧化物的形式存在,材料的可逆容量和电化学循环稳定性较硅/碳材料均有较为明显的提高,900℃条件下热解得到的材料的首次可逆容量为584 mA·h·g-1,复合材料在第40次循环的可逆容量可达到325 mA·h·g-1.  相似文献   

11.
以柠檬酸作为螯合剂,通过简单的溶胶-凝胶法制备了富锂层状氧化物Li1.2Ni0.16Co0.12Mn0.52O2纳米颗粒。X射线衍射(XRD)和透射电子显微镜(TEM)结果显示:尺寸在100~300 nm的产物具有良好的六方层状结构。作为锂离子电池正极活性物质,在0.1C电流密度和2.0~4.7 V电压区间,Li1.2Ni0.16Co0.12Mn0.52O2电极的初始放电比容量为245.9 mAh·g-1;在0.5C的电流密度下,经过60次循环容量保持率达到97.3%;同时在5C这样高的电流密度下,放电容量也能稳定在115.8 mAh·g-1。  相似文献   

12.
为提高硅颗粒再硅基锂离子电池中的寿命,利用聚吡咯在微波条件下制成的线性碳材料制成了能够存储硅颗粒的网状结构,并在该结构基础上覆盖一层致密的不含硅的石墨烯材料层,在极片表面形成双层结构,这种双层结构没有改变硅颗粒在工作过程中的体积膨胀,但可以为硅的膨胀提供缓冲空间且有效阻止硅颗粒与集流体脱离联系,从而使电池的有效容量和循环性能得以提升。当粒径分布在0.5~5μm的硅颗粒结合这种双层结构应用于锂离子电池时,在500 mA?g-1的电流条件下经过100次循环,可逆比容量高达829.6 mAh?g-1。  相似文献   

13.
以5 V高电压LiNi_(0.5)Mn_(1.5)O_4为正极材料,高安全性Li_4Ti_5O_(12)为负极材料制备了LiNi_(0.5)Mn_(1.5)O_4/Li_4Ti_5O_(12)全电池,重点研究了正负极容量配比对电池电化学性能的影响。其中正极容量过量40%的电池具有最好的倍率和循环性能,在0.5 C电流下,P/N=1.4的电池的最高放电比容量为164.1 m Ah·g~(-1),循环200次的容量保持率为88%;在2 C电流下,P/N=1.4的电池的最高放电比容量为135.2 m Ah·g~(-1),循环740次的容量保持率为91.1%。P/N=1.4的电池良好的倍率和循环性能与其内阻较小、电池极化较小等因素有关。  相似文献   

14.
多孔结构V_2O_5材料在锂离子嵌入和循环稳定性方面有明显优势而引起广泛关注,然而通过简易方法来制备均匀且具有多孔结构的V_2O_5微球仍面临挑战。本文以偏钒酸铵作为钒源,通过简单的一步溶剂热反应后置于大气中进行烧结,最后制备了V_2O_5多孔微球。采用X射线衍射(XRD)、扫描电镜(SEM)以及电化学测试等手段对其进行表征和测试。结果表明,V_2O_5多孔微球作为锂离子电池正极材料具有良好的电化学性能,其首次放电比容量在0.2 C、1 C和4 C倍率时分别为249.7 m Ah·g-1、212 m Ah·g-1和160.1 m Ah·g-1,同时也表现出了良好的循环性能,其在1 C条件下循环50圈后的比容量为172.8 m Ah g-1,其保持率约为81%。  相似文献   

15.
以FeSO4·7H2O为原料,通过两步热处理合成碱式硫酸铁样品,考察其作为锂离子电池正极材料的电化学性能。实验结果表明,所合成的FeOHSO4样品为具有单斜结构的纯晶相材料,该材料的首次放电容量达135 mAh·g-1,平均电压平台为3.2 V,50次循环后,放电容量衰减为73 mAh·g-1。该材料合成工艺简单,成本低廉,显示了良好的工业应用前景。  相似文献   

16.
《山东化工》2021,50(7)
采用一锅法合成了硫化铜(CuS)与还原氧化石墨烯复合的可充电镁电池正极材料。在恒电流充放电测试中,该材料表现出优异的综合电化学性能,在56 m A·g-1的充放电速率下实现了约320 m Ah·g-1的可逆容量,在280 m A·g-1提高的充放电速率下表现出超过200次的长循环稳定性,且容量保持率高达71.2%。此外,通过in situ XRD、XPS和TEM等技术手段详细揭示了该复合正极的储镁机理,并找到了导致最初循环电化学性能快速衰减的关键原因,即CuxS (0x≤2,例如Cu2S)作为充放电中间产物,电化学可逆性较差。值得一提的是,本工作证明了复合材料设计能够有效地提高可充电镁电池正极的储镁性能。  相似文献   

17.
通过调整化学组成x(x为0、0.05、0.1),采用自蔓延燃烧合成了不同Fe/Ni比的前驱体,经700℃高温煅烧合成出纳米Li1.2Fe0.2-xNi0.1+xMn0.5O2材料。XRD分析表明随着Fe/Ni比增大,材料的晶体结构由α-Na Fe O2层状结构向单斜C2/m结构过渡,晶系对称性降低。x=0.05时(Fe/Ni比为1∶1),Li1.2Fe0.15Ni0.15Mn0.5O2纳米材料(LFNMO-1F1N)具有良好的α-Na Fe O2层状结构和更完整的层状程度,晶粒尺寸为10.96nm。SEM分析表明LFNMO-1F1N为分布均匀的纳米颗粒,粒径范围38~62 nm。恒电流测试结果表明,在0.1C倍率下,LFNMO-1F1N的首次可逆容量高达258.9 mAh·g-1,远高于LFNMO-2F1N(191.6 mAh·g-1)和LFNMO-1F2N的可逆容量(155 mAh·g-1),在2C倍率下的可逆容量仍有138.4 mAh·g-1。在1C倍率下充放电循环100次后,可逆容量仍有122.6 mAh·g-1,保持率为78.6%。研究结果表明,当Fe/Ni比为1∶1时,Li1.2Fe0.15Ni0.15Mn0.5O2纳米颗粒具有最大的可逆比容量、最佳倍率与循环性能。  相似文献   

18.
通过使用水合肼还原对苯二胺盐酸盐改性过的氧化石墨烯,得到了三维石墨烯。以得到的三维石墨烯作为电极材料,采用循环伏安法、恒电流充放电和交流阻抗对其电化学性能进行研究。结果显示:在电压区间为-0.2~0.8 V,电流密度为2 A·g-1的条件下其比电容为212 F·g-1,当电流密度增加到200 A·g-1时,其比电容仍然保持在156 F·g-1,在20 A·g-1的电流密度下循环1000次之后其容量保持率在98%,较高的比电容、优异的大电流放电性能和较好的循环稳定性表明获得的三维石墨烯是一种优异的超级电容器电极材料。  相似文献   

19.
以间苯二酚、甲醛和草酸铌为原料,通过原位聚合和高温煅烧,制备出多孔碳负载的五氧化二铌(Nb2O5)材料。X射线粉末衍射和扫描电镜分析表明,负载在多孔碳表面上的五氧化二铌具有三维纳米凸起结构,属于正交晶型。循环伏安测试表明该复合材料的比电容达到290 F·g-1,并具有良好的大电流放电能力,5 A·g-1的放电电流下,容量可以达到108 F·g-1。0.5 A·g-1的首次放电容量为355 F·g-1(1.0~3.0 V vs.Li+/Li),100次循环后容量保持率为82%。通过对交流阻抗图谱和等效电路的模拟分析,对其电化学赝电容特性进行了讨论。该复合材料降低了电解液中离子在充放电过程中的迁移路径和扩散阻力,实现Nb2O5活性材料的多维度接触,提高了Nb2O5的导电性,改善了其超级电容特性。  相似文献   

20.
《广东化工》2021,48(4)
以琼脂糖为碳源,磷酸二氢钾和偏钒酸铵为原料,通过固相反应法制备K3V2(PO4)3/C复合材料。研究材料的结晶性、颗粒形貌尺寸和电化学性能。结果表明,材料具有较高的结晶度,一次颗粒尺寸约100~300 nm,存在颗粒团聚现象。K3V2(PO4)3/C用作钾离子电池正极材料,表现出较好的嵌脱钾可逆性,在20 mA·g-1电流密度下的放电比容量为65 mAh·g-1,循环130次后容量保持率达到86%,表现出较好的循环稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号