首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
研究了激光选区熔化(SLM) TC4钛合金沉积态和退火态显微组织的特征及其对力学性能的影响规律。结果表明:合金组织沿激光选区熔化成形高度方向呈现外延生长,形成柱状晶,晶内存在大量的针状马氏体α''相。退火后,晶内的针状α''相转变为α+β板条组织。随着退火温度的升高,组织中α相含量逐渐降低,α片层逐渐粗化,β相含量逐渐升高;室温拉伸强度逐渐降低,塑性逐渐升高,显微硬度逐渐降低。经过800℃×2 h/FC退火热处理后,激光选区熔化成形TC4钛合金具有最佳的强度与塑性匹配。  相似文献   

2.
激光成形TC4钛合金亚临界退火组织及形成机制   总被引:3,自引:0,他引:3  
研究激光熔化沉积TC4钛合金亚临界点退火显微组织特征及显微组织演变规律,研究退火温度及退火后冷却方式(水冷、空冷)对组织形态的影响规律。结果表明,激光熔化沉积TC4钛合金在Tβ温度以下15~25℃范围内等温退火后,获得由蟹状初生α及细小层片状β转变组织组成的"特种双态组织"。随退火温度升高,蟹状形态特征愈加明显,但体积分数降低,宽度增加,长径比减小。亚临界退火后冷却过程中β→α+β转变的充分进行及一定固溶温度以产生足够的β相是蟹状初生α及特种双态组织形成的必要条件。  相似文献   

3.
研究了固溶温度对电子束熔丝成形TC17钛合金组织及力学性能的影响。结果表明:电子束熔丝成形TC17钛合金为柱状晶组织,柱状晶沿堆积高度方向生长,在柱状晶内部为细小的(α+β)板条构成的网篮状组织。随固溶温度升高,(α+β)→β转变更加充分,初生α相含量减少,初生α相含量和形态对材料的塑性有较大影响,因此塑性降低,强度上升。  相似文献   

4.
研究了高能量输入条件下激光熔化沉积(LMD) TC4钛合金在沉积态、去应力退火、热等静压、热等静压+固溶时效、固溶时效5种状态下的显微组织和室温拉伸性能。结果表明:直接沉积态的TC4合金组织粗大且不均匀,原始β晶内由大量针状马氏体α'相和转变的板条α相组成,综合力学性能低,其纵向抗拉强度仅839 MPa; 650~800℃的去应力退火后,激光熔化沉积成形TC4钛合金的组织中α板条宽度随退火温度的上升先增加后减少,拉伸性能呈现先升高后降低的趋势;热等静压后合金组织为网篮组织;固溶时效后合金组织主要由无序的短棒状α相组成,拉伸性能明显上升,其抗拉强度达到1022 MPa,屈服强度达到909 MPa,伸长率超过9%。  相似文献   

5.
研究了固溶温度对电子束熔丝成形TC17钛合金组织及力学性能的影响。结果表明:电子束熔丝成形TC17钛合金为柱状晶组织,柱状晶沿堆积高度方向生长,在柱状晶内部为细小的(α+β)板条构成的网篮状组织。随固溶温度升高,(α+β)→β转变更加充分,初生α相含量减少,初生α相含量和形态对材料的塑性有较大影响,因此塑性降低,强度上升。  相似文献   

6.
采用三火次热轧工艺制备出厚度为6.0mm的TC25钛合金板材,研究了退火温度对TC25钛合金板材显微组织、室温力学性能和高温力学性能的影响。结果表明:在760~840℃范围内,随着退火温度的升高,TC25钛合金板材热加工形成的等轴组织中初生α相长大;当退火温度升高至880℃时,显微组织由等轴组织向双态组织转变;温度进一步升高至920℃时,呈现双态组织;当退火温度达到960℃时,双态组织中的初生α相含量明显减少,次生α相含量显著增多。双态组织的TC25钛合金板材相比等轴组织的TC25钛合金板材具有更好的室温力学性能和高温力学性能。TC25钛合金板材在920~960℃退火时可获得双态组织,且具有良好的室温和高温拉伸性能。  相似文献   

7.
退火温度对激光熔化沉积TA15钛合金组织和性能的影响   总被引:2,自引:0,他引:2  
采用激光熔化沉积工艺制备TA15钛合金棒材和板材.利用OM、SEM和TEM等方法研究退火温度对棒材组织和板材性能的影响.结果表明:激光熔化沉积TA15钛合金β晶粒具有十分优异的高温稳定性,在β相区长期退火,其β晶粒尺寸几乎无变化.激光熔化沉积成形态为典型的层片状β转变组织.在两相区上部退火,形成特殊的"双态"组织,初生α呈规则长条块状,其体积分数随退火温度的升高而降低.在β相区退火获得细层片状组织.在α β两相区退火,随温度的升高,强度有下降趋势,塑性显著下降.  相似文献   

8.
双重退火对TC18钛合金等温锻件组织性能的影响   总被引:3,自引:1,他引:2  
研究了双重退火时不同的退火温度对TC18钛合金等温锻件组织性能的影响。结果表明:随着高温退火温度的升高,初生α相含量明显减少,次生片状α大量增加,合金的强度提高,塑性降低。随着低温退火温度的升高,细小弥散的次生α相不断长大粗化,合金强度不断降低。TC18钛合金等温锻造后采用830℃×2h,炉冷至750℃×2h,空冷+570℃×4h,空冷的双重退火工艺时,可得到较佳的显微组织和良好的综合性能。  相似文献   

9.
高星  张宁  丁燕  蒋波 《金属热处理》2022,47(9):12-17
采用光学显微镜、扫描电镜和电子万能试验机研究固溶时效工艺中时间参数对激光选区成形(SLM)TC4(Ti6Al4V)钛合金显微组织和力学性能的影响。结果表明,退火态的SLM成形TC4钛合金的显微组织主要由连续的晶界α相(αGB)、网篮状α相和β转变组织组成。经固溶时效处理后,试样的显微组织均呈现为网篮组织。在固溶温度为920 ℃,时效工艺为550 ℃×3 h,空冷的条件下,随着固溶时间从2 h增加为6 h,初生α相粗化明显,部分αP相的晶粒长度可达16 μm;片状α相也发生粗化,晶粒长度由5~15 μm增长至20~30 μm,连续的晶界α相(αGB)变得不连续,晶粒宽度由2.7 μm增长为4.4μm;同时,组织中出现了尺寸较大的α集束。试样的强度由1045.2 MPa增加为1156.9 MPa,断后伸长率由13.6%降低为6.7%。在时效温度为550 ℃,固溶工艺为920 ℃×2 h,水淬的条件下,随着时效时间从3 h增加为8 h,β转变组织的占比增加,初生α相的长度由40~60 μm减少为30~40 μm,晶界处连续的αGB相晶粒宽度由2.7 μm增长为4.5 μm;片状α相稍有粗化,而试样的力学性能变化不大。因此,对于SLM成形TC4钛合金而言,在920 ℃固溶温度及550 ℃时效温度下,改变固溶和时效时间参数难以获得双态组织,且对综合力学性能的提高无显著影响。  相似文献   

10.
研究了激光熔化沉积TC17钛合金原态及固溶时效后的显微组织,分析了一重固溶+时效和两重固溶+时效热处理对初生α相含量、长宽比的影响。结果表明,激光熔化沉积态TC17钛合金凝固组织为粗大的柱状β晶,显微组织为细密的片层α+β两相网篮组织。当固溶温度从800℃升高到835℃时,初生α相体积分数由53%减少到34%,宽0.4~0.5μm,长宽比约从9∶1减小到5∶1;时效后初生α相片层显著粗化,宽0.7~0.8μm,次生α相极其细密,均匀分布于初生α片层之间,含量随固溶温度升高逐渐增多。当进行两重固溶处理时,第一步固溶温度决定初生α相含量,而对初生α相的宽度及长宽比几乎没有影响,第二步固溶时间主要影响初生α相的长宽比,而对初生α相的含量及宽度几乎没有影响。  相似文献   

11.
对电子束冷床炉熔铸的TC4钛合金扁锭,通过3个火次轧制获得了不同厚度的板材,研究了不同退火温度(750、780、810和850 ℃)对板材显微组织和力学性能的影响。结果表明,一火轧制板材的显微组织破碎不充分,提高退火温度未能明显改变初生α相的形态,二火、三火轧制后原始片层组织逐渐完全破碎,等轴状初生α相比例相应提升,随着退火温度的升高,二火板材初生α相逐渐球化,三火板材初生α相在780 ℃开始逐渐长大,次生α相均呈现出增厚变宽的趋势。综合分析认为,一火板材在810 ℃、二火板材在840 ℃、三火板材在750 ℃退火后,获得了较好的强度和塑性匹配;通过对相应合金板材断口形貌分析,室温断裂机制和高温断裂机制均为典型的韧性断裂。  相似文献   

12.
采用显微组织观察和力学性能测试等方法研究了退火工艺参数对增材制造TC18钛合金力学性能和组织的影响。结果表明,增材制造TC18钛合金试块宏观形貌平整,表面没有裂纹等缺陷,表面呈均匀的银白色。试样经600 ℃退火保温2 h后的各项力学性能均满足GJB 2744A—2007指标要求,其规定塑性延伸强度为1036 MPa,抗拉强度为1084 MPa,断后伸长率为9.8%,断面收缩率为30%。增材制造TC18钛合金的组织为典型的柱状晶组织,粗大的β相柱状晶粒内为细长的针状α相及编织细密的α+β相板条组织;随着退火温度的升高,β相柱状晶内的针状α相逐渐粗化。  相似文献   

13.
以激光选区熔化技术(SLM)成型TC4钛合金为研究对象,通过光学显微镜(OM)、扫描电镜(SEM)和电子万能试验机等测试分析方法,研究了热等静压处理温度对TC4钛合金材料微观组织和力学性能的影响。结果表明,SLM态TC4钛合金横截面微观组织由等轴状初生β晶粒组成,纵截面微观组织由呈外延生长的柱状初生β晶粒组成。晶粒内部以不同取向的针状α'马氏体相为主,纳米点状β相在初生马氏体间形核生长。在α+β两相区温度进行热等静压处理,TC4钛合金的组织由α相和β相组成。随着热等静压处理温度的升高,板条状α相粗化成短棒状,β相含量增加且发生一定粗化。随着热等静压处理温度的升高,材料的抗拉强度和屈服强度呈现降低的趋势,断面收缩率也呈下降趋势。热等静压处理工艺为910 ℃-110 MPa-2 h的TC4钛合金可获得最优的强韧性匹配。  相似文献   

14.
为提高低成本TC4LCA钛合金板材的强度和冲击性能,选取不同退火温度对典型规格板材进行热处理,研究了其显微组织和力学性能的变化规律,分析了显微组织对强度和冲击性能的影响。结果表明,随着退火温度的升高,TC4LCA钛合金中的长条状初生α相转变为等轴状,β转变组织中析出针状或片状次生α相;退火温度越高,长条状初生α相含量减少,等轴化倾向明显,直至发生粗化;针状或片状次生α相长大。合金的强度先增大后减小、断后伸长率略有降低,冲击吸收能量则呈增大趋势。综合考虑,在800~880 ℃范围进行退火可使TC4LCA钛合金板材获得强度、塑韧性的最佳匹配。  相似文献   

15.
基于DEFORM-3D有限元平台建立了TA15钛合金大型复杂整体构件预锻成形过程的有限元模型,研究了成形参数对预锻成形过程中变形体组织演化和等轴α相晶粒尺寸的影响规律。结果表明:随着变形的进行,等轴α相晶粒发生细化;在950~980℃范围内变形时,随着变形温度的升高,初生α相晶粒尺寸逐渐增大,在980℃条件下变形时,预锻件整体范围内晶粒尺寸波动较大;随着变形速率的增加,初生α相晶粒尺寸减小;在0.5和1.0mm/s条件下成形时,温度对晶粒尺寸影响比较小,而在0.1mm/s条件下变形时,随着温度的升高,晶粒长大比较严重;随摩擦因子的增大,平均晶粒尺寸有所减小,整个锻件晶粒尺寸分布的不均匀性增加。  相似文献   

16.
采用EB炉一次熔炼TC4合金扁锭作为直轧坯料,在4200 mm宽厚板轧机上成功制备出规格46 mm×2650 mm×8700 mm的低成本TC4合金宽厚板,研究了退火温度对低成本TC4合金板材显微组织和力学性能的影响。结果表明:EB熔炼TC4合金扁锭经过两火换向轧制,粗大铸态组织得到充分破碎,热轧态TC4合金板材显微组织中等轴α或条状α含量较高,横纵向室温拉伸性能差异小,横向室温冲击吸收能量小于纵向,横纵向心部强度均高于表层。TC4合金板材经750~900 ℃退火,横纵截面为等轴组织,经950 ℃退火,横纵截面为双态组织,经980 ℃退火,横截面为双态组织,纵截面为魏氏组织。随着退火温度升高,TC4合金板材抗拉强度和规定塑性延伸强度呈下降趋势,伸长率基本不变,室温冲击吸收能量先升高后降低,900 ℃退火后,强度、伸长率和冲击吸收能量达到最佳匹配。  相似文献   

17.
退火温度对TC4钛合金动态断裂韧性的影响   总被引:1,自引:0,他引:1  
采用示波冲击法,对750℃、相变点以下(20~60)℃、相变点以上10℃等7种不同热处理状态TC4钛合金的动态断裂韧性进行了测试,结合金相组织观察及扫描电镜断口形貌观察,分析了初生α相含量及次生α相形貌对TC4钛合金动态断裂韧性的影响.结果表明,对于初生α+β转变组织的TC4合金,初生α相含量在47%~50%范围,次生...  相似文献   

18.
利用光学金相、扫描电镜以及拉伸、冲击、断裂韧性试验等手段研究了不同双重退火工艺对TC21钛合金显微组织和力学性能的影响。结果表明:第一次退火温度一定时,随着第二次退火温度的上升,试样中块状α相更易于形成;第二次退火温度一定时,随着第一次退火温度的上升,试样中形成大块α相的概率变小;TC21钛合金的断面收缩率对不同双重退火工艺最为敏感;900 ℃×2 h+500 ℃×4 h双重退火工艺下制备的试样具有弯折的粗大条状α相及最大的冲击吸收能量;950 ℃×2 h+590 ℃×4 h双重退火工艺下制备的试样能在裂纹扩展中吸收最多的能量,具有最高的断裂韧性。  相似文献   

19.
双重退火对BT25钛合金组织与性能的影响   总被引:1,自引:0,他引:1  
研究双重退火时不同退火温度对BT25钛合金组织与力学性能的影响。结果表明:双重退火后的室温和高温拉伸性能都强于单一退火,具有良好的综合性能。双重退火时,随着第1退火温度的提高,初生等轴α相含量减少,颗粒逐渐增大,次生α相增多增大;合金的强度降低,塑性及韧性提高。随着第2退火温度的升高α颗粒尺寸稍有增大,球化程度进一步提高;合金强度、塑性及韧性变化不大,高温性能稳定。BT25钛合金采用(940~980)℃×1 h,空冷+(530~570)℃×6 h,空冷的双重退火工艺时,可得到较理想的显微组织和良好的综合性能。  相似文献   

20.
以海绵钛和电解钛分别作为熔炼TC4钛合金的原材料,将熔炼后的铸锭进行热轧并退火处理,研究不同原料铸锭轧制的TC4合金板材退火处理后的组织与力学性能。结果表明:去应力退火对电解钛与海绵钛TC4合金板材组织的影响不大。再结晶退火后,电解钛与海绵钛TC4合金板材均有再结晶的等轴α相,而电解钛TC4合金的等轴化程度更高,内部组织更均匀。海绵钛TC4合金板材在经550 ℃退火处理后的应力去除效果比电解钛TC4合金的好,其强度略微降低,而塑性提升更为明显。电解钛TC4合金板材在经过800 ℃退火处理后的再结晶效果比海绵钛TC4合金好,其强度略微降低,而塑性得到极大的提升。两种钛合金板材退火后板材的断裂方式皆为韧性断裂。海绵钛TC4合金板材经退火后硬度降低,而电解钛TC4合金板材经退火后硬度增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号