首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
以合成的颗粒尺寸为140 nm×450 nm×1μm的ZIF-71晶体为添加物、PEBA2533为有机基质,在PTFE载体上制备了一系列ZIF-71/PEBA2533/PTFE混合基质膜,并利用SEM、XRD和FT-IR等表征方法研究不同尺寸ZIF-71晶体及相应膜材料的形貌和结构,探究ZIF-71颗粒尺寸对膜材料结构的调节作用,同时将膜材料应用于苯酚-水溶液的分离。结果表明,小尺寸的ZIF-71晶体在膜中分布均匀且未发生团聚,但当添加物颗粒尺寸较大时会发生团聚现象。掺杂小尺寸ZIF-71颗粒可同时提高膜材料的苯酚通量和分离因子。  相似文献   

2.
为提高聚醚嵌段酰胺 (PEBA)膜对水中苯酚的选择分离性能,采用二苯并-18-冠醚-6 (CE) 对PEBA膜进行改性制备了PEBA/CE渗透蒸发膜。通过FT-IR、SEM表征证实了CE与PEBA紧密结合且CE均匀分布在膜表面;AFM表征表明CE的修饰有效地提高了膜表面与苯酚的接触面积;水接触角测试表明CE的修饰极大地提高了PEBA/CE膜的疏水性。同时系统地研究了膜中CE含量、原料液苯酚浓度、进料温度对膜渗透汽化性能的影响,结果表明CE能显著提高PEBA膜对苯酚的选择性,在料液苯酚为0.8%(质量)及70℃操作温度条件下,当CE 的添加量为PEBA的6%(质量)时,PEBA/CE-6膜的分离因子和渗透通量分别为23.34和494.40 g/(m2·h),远超PEBA膜性能[分离因子8.46,总渗透通量547.48 g/(m2·h)]。长期性能稳定性测试表明所制备PEBA/CE-6膜具有良好稳定性,具有较好的工业运用潜力。  相似文献   

3.
将β-环糊精(β-CD)添加到聚醚共聚乙酰胺(PEBA)中制备β-环糊精/聚醚共聚乙酰胺填充膜(β-CD-f-PEBA),用于苯酚-水的渗透汽化分离研究。SEM、FTIR表明β-环糊精在膜中分散均匀且与膜结合紧密,与膜间只有氢键相互作用而未发生化学交联。拉伸实验表明膜的拉伸强度和断裂强度均随着β-CD添加量的增加先减小后增大。采用基团贡献法计算了PEBA、苯酚及水的溶解度参数,证明PEBA膜对苯酚具有较高的选择吸附性。通过溶胀验证膜对苯酚的选择吸附性能,膜对苯酚的吸附量度随着料液中苯酚浓度和膜中β-CD添加量的增加而增加。考察了PEBA和β-CD-f-PEBA膜的渗透汽化性能,当β-CD填充量为0.5%(质量)时,分离效果最佳,渗透通量和分离因子分别为3062.9 g·m~(-2)·h~(-1)和43.3。通过Arrhenius方程计算苯酚和水的渗透活化能分别为97.19和52.12k J·mol-1。重复实验表明β-CD-f-PEBA膜的操作稳定性良好。  相似文献   

4.
周毅  王永洪  张新儒  李晋平 《化工学报》2021,72(10):5237-5246
为了获得高性能的混合基质膜,有效捕集烟道气中的CO2,设计了对CO2有优异的扩散选择性和吸附选择性的氮硫共掺杂多孔碳球添加剂,实现了烟道气中CO2/N2的高效分离。选用表面含氧基团丰富的葡萄糖作为碳源,硫脲作为氮源和硫源,通过水热法制备了氮硫共掺杂碳球(NSC),并用KOH活化,获得了具有多孔结构的氮硫共掺杂碳球(NSPC),再加入聚醚嵌段酰胺(PEBA)中制备出PEBA/NSPC混合基质膜。采用FTIR、XRD和BET表征了材料的化学结构和孔结构,借助力学性能表征了膜的两相界面相容性。系统研究了PEBA/NSPC混合基质膜中葡萄糖与硫脲的质量比、NSC和KOH的质量比、NSPC的添加量、操作压力、操作温度,以及模拟烟道气条件对膜CO2渗透性、CO2/N2选择性的影响。结果表明:NSPC材料成功实现了氮、硫元素的共掺杂,而且具有较好的孔结构。在操作温度25℃、操作压力0.2 MPa的条件下,混合基质膜中NSPC添加量为3%(质量)时气体分离性能最优,CO2渗透系数和CO2/N2选择性分别为589 Barrer和64,相比纯PEBA膜分别提高了244%和139%。这是因为多孔碳球的微孔结构显著提高了CO2的扩散选择性,同时氮、硫元素的掺杂因为酸碱相互作用和良好亲和性有效提高了CO2的吸附选择性。稳定性实验表明,PEBA/NSPC混合基质膜在360 h连续运行过程中气体分离性能稳定,具有较好的工业应用前景。  相似文献   

5.
将β-环糊精(β-CD)添加到聚醚共聚乙酰胺(PEBA)中制备β-环糊精/聚醚共聚乙酰胺填充膜(β-CD-f-PEBA),用于苯酚-水的渗透汽化分离研究。SEM、FTIR表明β-环糊精在膜中分散均匀且与膜结合紧密,与膜间只有氢键相互作用而未发生化学交联。拉伸实验表明膜的拉伸强度和断裂强度均随着β-CD添加量的增加先减小后增大。采用基团贡献法计算了PEBA、苯酚及水的溶解度参数,证明PEBA膜对苯酚具有较高的选择吸附性。通过溶胀验证膜对苯酚的选择吸附性能,膜对苯酚的吸附量度随着料液中苯酚浓度和膜中β-CD添加量的增加而增加。考察了PEBA和β-CD-f-PEBA膜的渗透汽化性能,当β-CD填充量为0.5%(质量)时,分离效果最佳,渗透通量和分离因子分别为3062.9 g·m-2·h-1和43.3。通过Arrhenius方程计算苯酚和水的渗透活化能分别为97.19和52.12 kJ·mol-1。重复实验表明β-CD-f-PEBA膜的操作稳定性良好。  相似文献   

6.
蒸气渗透(VP)膜分离不存在膜污染风险,在生物乙醇生产中具有广阔的应用前景。将聚二甲基硅氧烷(PDMS)膜和以二维沸石咪唑骨架(ZIF-L)为填充基质制备的PDMS(ZIF-L/PDMS)混合基质膜,分别用于VP膜分离与菊粉水解液发酵制乙醇过程的耦合,分析了二者在耦合过程中的分离性能和发酵性能。探究了不同膜分离方式、不同类型膜及操作条件对膜分离性能的影响。实验结果表明,当料液浓度为5%(质量)、蒸气循环流量为1.5 L·min-1时,ZIF-L/PDMS混合基质膜的VP性能高于渗透汽化(PV),归一化总通量达到1148.78 g·m-2·h-1,分离因子高达19.14,显著提升了乙醇分离性能。ZIF-L/PDMS混合基质膜用于VP耦合发酵,实现了耦合过程的高渗透性和乙醇选择性,与文献报道相比,乙醇移除效果最优,乙醇产率和时空产率分别达到0.421 g·g-1、3.07 g·L-1·h-1,两个指标明显高于单独发酵,极大地提高了乙醇生产效率。因此,ZIF-L/PDMS混合基质膜在原位分离发酵乙醇方面具有很大的应用潜力。  相似文献   

7.
为了提升从水溶液中回收乙酸乙酯的渗透汽化分离效率,将疏水ZIF-67颗粒填充到聚醚共聚酰胺(PEBA)中,制备得到ZIF-67/PEBA杂化膜。通过扫描电镜(SEM)、能谱(EDS)、接触角测量、傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、热重(TGA)和溶胀度测试等手段对ZIF-67和杂化膜的物理化学性质进行表征,通过渗透汽化实验考察ZIF-67质量分数、进料质量分数和温度对膜分离性能的影响。结果表明ZIF-67与PEBA基质之间为物理共混,杂化膜疏水性增强。随着ZIF-67质量分数的增加,总渗透通量先降低后升高,分离因子先升高后降低,当ZIF-67质量分数为5%时分离因子最高;随着进料质量分数或温度增加,总渗透通量和分离因子均增加,最大总渗透通量为2299g·m~(-2)·h~(-1),最大分离因子为122。研究为渗透汽化技术工业化应用提供了必要的基础数据和理论依据。  相似文献   

8.
为了实现混合基质膜中CO2的高效分离,设计了羧基化多壁碳纳米管(CNT)和氨基化β-环糊精金属有机骨架(β-CD MOF)双填料(CM),并将其引入磺化聚醚醚酮(SPEEK)基质中,在膜内同时构建CO2扩散通道和亲和位点,增强了混合基质膜的分离性能。采用FTIR和BET表征了CM的化学结构和孔结构,借助膜的SEM、FTIR和力学性能表征了填料-聚合物界面相互作用。研究了CM的合成比例、含量、压力、温度和混合气等因素对混合基质膜分离性能的影响。结果表明:CM与SPEEK之间具有良好的相容性并为气体分子提供了快速的传递通道。在改性CNT与MOF的质量比为5∶5、添加量为7%(质量)以及0.1 MPa和25℃的条件下,混合基质膜的分离性能最优,CO2渗透性为844 Barrer,CO2/N2选择性为84,与纯SPEEK膜相比,分别提升了178%和163%,超过2019年上限。羧基化CNT的直孔通道缩短了CO2的扩散路径,同时改性β-CD MOF表面的氨基载体提升了CO2的溶解性,两者协同提高了混合基质膜的分离性能。此外,负载双填料的膜比单独负载相同含量的羧基化CNT或氨基化MOF的膜具有更好的分离性能。在360 h的测试过程中,混合基质膜保持较好的分离稳定性。  相似文献   

9.
为了实现混合基质膜中CO2的高效分离,设计了羧基化多壁碳纳米管(CNT)和氨基化β-环糊精金属有机骨架(β-CD MOF)双填料(CM),并将其引入磺化聚醚醚酮(SPEEK)基质中,在膜内同时构建CO2扩散通道和亲和位点,增强了混合基质膜的分离性能。采用FTIR和BET表征了CM的化学结构和孔结构,借助膜的SEM、FTIR和力学性能表征了填料-聚合物界面相互作用。研究了CM的合成比例、含量、压力、温度和混合气等因素对混合基质膜分离性能的影响。结果表明:CM与SPEEK之间具有良好的相容性并为气体分子提供了快速的传递通道。在改性CNT与MOF的质量比为5∶5、添加量为7%(质量)以及0.1 MPa和25℃的条件下,混合基质膜的分离性能最优,CO2渗透性为844 Barrer,CO2/N2选择性为84,与纯SPEEK膜相比,分别提升了178%和163%,超过2019年上限。羧基化CNT的直孔通道缩短了CO2的扩散路径,同时改性β-CD MOF表面的氨基载体提升了CO2的溶解性,两者协同提高了混合基质膜的分离性能。此外,负载双填料的膜比单独负载相同含量的羧基化CNT或氨基化MOF的膜具有更好的分离性能。在360 h的测试过程中,混合基质膜保持较好的分离稳定性。  相似文献   

10.
CCUS是能源行业绿色发展的重要途经。与化学吸收法、变压吸附法和低温蒸馏法等传统工艺相比,膜分离方法具有低能耗、高效率、小型化、环境友好、易于与其他技术集成等优势。目前,膜材料的选择、改性以及对膜结构的重构是提高膜材料分离性能的关键。本文总结对比了有机聚合物膜、无机膜以及混合基质膜的研究进展,并对其分离机理、分离性能、改性研究以及用于制备混合基质膜的填充材料进行了综述,并进一步展望了CO2分离膜材料性能改进的研究方向及膜分离技术所面临的挑战。  相似文献   

11.
《分离科学与技术》2012,47(12):2894-2914
Abstract

In order to simultaneously achieve both high permselectivity and permeability (flux) for the recovery of aromatic compounds such as phenol from aqueous streams, a composite organophilic hollow fiber based pervaporation process using PDMS/PEBA as two-layer membranes has been developed. The process employed a hydrophobic microporous polypropylene hollow fiber, having thin layers of silicones (PDMS) and PEBA polymers coating on the inside diameter. The composite membrane module is used to investigate the pervaporation behavior of phenol in water in a separate study; and that of a mixture of phenol, methanol, and formaldehyde in an aqueous stream (a typical constituent of wastewater stream of phenol-formaldehyde resin manufacturing process) in another study. The fluxes of phenol and water increase relatively linearly with increasing concentration especially at low feed concentration, and exhibit a near plateau with further increase in concentration. As a result, the phenol/water separation factor decreases as the feed concentration increases. Significant improvement in phenol/water separation factor and phenol flux is achieved for this two-layer (PDMS/PEBA) membranes as compared to that achieved using only PDMS membrane. The phenol and water fluxes and the separation factor are highly sensitive to permeate pressure as all decrease sharply with increase in permeate pressure. For this membrane, an increase in temperature increases the separation factor, and also permeation fluxes of phenol and water. An increase in feed-solution velocity does not have a significant effect on phenol and water fluxes, and also on the separation factor at least within the range of the feed-solution velocity considered. In the study of pervaporation behavior of a typical constituent of wastewater stream of phenol-formaldehyde resin manufacturing process, phenol permeation shows a much higher flux and a higher increase in flux with increase in concentration is also exhibited as compared to that exhibited by methanol permeation. This thus indicates that the membrane is more permeable to phenol than to methanol and formaldehyde.  相似文献   

12.
Graphene oxide (GO)‐polyether block amide (PEBA) mixed matrix membranes were fabricated and the effects of GO lateral size on membranes morphologies, microstructures, physicochemical properties, and gas separation performances were systematically investigated. By varying the GO lateral sizes (100–200 nm, 1–2 μm, and 5–10 μm), the polymer chains mobility, as well as the length of the gas channels could be effectively manipulated. Among the as‐prepared membranes, a GO‐PEBA mixed matrix membrane (GO‐M‐PEBA) containing 0.1 wt % medium‐lateral sized (1–2 μm) GO sheets showed the highest CO2 permeation performance (CO2 permeability of 110 Barrer and CO2/N2 mixed gas selectivity of 80), which transcends the Robeson upper bound. Also, this GO‐PEBA mixed matrix membrane exhibited high stability during long‐term operation testing. Optimized by GO lateral size, the developed GO‐PEBA mixed matrix membrane shows promising potential for industrial implementation of efficient CO2 capture. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2843–2852, 2016  相似文献   

13.
Composite membranes were prepared by incorporating ZSM‐5 zeolite into poly(ether‐block‐amide) (PEBA) membranes. These composite membranes were characterized by TGA, XRD, and SEM. The results showed that the zeolite could distribute well in the polymer matrix. And when the zeolite content reached 10%, the agglomeration of zeolite in the membranes was found. The composite membranes were used to the pervaporative separation of n‐butanol aqueous solution. The effect of zeolite content on pervaporation performance was investigated. With the contribution of preferential adsorption and diffusion of n‐butanol in the polymer matrix and zeolite channel, the 5% ZSM‐5‐PEBA membrane showed enhanced selectivity and flux. The effects of liquid temperature and concentration on separation performance were also investigated. All the composite membranes demonstrated increasing separation factor and permeation flux with increasing temperature and concentration. Incorporation of ZSM‐5 could decrease the activation energy of n‐butanol flux of the composite membrane. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
含酚废水对环境有较大危害,近年来发展较快的渗透蒸发技术对含酚废水的处理较有潜力。论文综述了聚二甲基硅氧烷(PDMS)、聚氨酯(PU)和聚醚嵌段聚酰胺(PEBA)三类聚合物膜及其改性膜在渗透蒸发分离含酚废水方面的进展,并进行了比较,展望了含酚废水渗透蒸发分离的未来发展方向。  相似文献   

15.
In this study, we fabricated a dual‐layer PES–poly(ether‐block‐amide) (PEBA) composite membrane that included zeolitic–midazolate framework 8 (ZIF‐8) particles and evaluated it for propylene and propane separation under pure and mixed feed conditions. To improve the performance, compatibility, and distribution of particles in the polymer matrix, the ZIF‐8 particles were modified by 3‐(triethoxysilyl) propyl amine (APTES) and 3‐(trimethoxysilyl) propyl amine (APTMS) amino silane coupling agents. Particle modification did not have much effect on the structure and particle size and slightly reduced the membrane specific surface area. The modified particles tended to be in the soft section. At the high loading rate of modified particles, their appropriate compatibility increased the membrane gas permeability () and selectivity. APTES with the proper chain length compared with APTMS had a higher and the same selectivity. The best performance (by 32.1 gpu) was found in PES–PEBA–ZIF‐8–APTES 20%. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46273.  相似文献   

16.
以聚醚嵌段共聚酰胺(PEBA2533)为膜材料,采用干法相转化法制备性能优异的高分子膜,用于渗透汽化-结晶耦合(PVCC)分离系统中回收稀水溶液中的香兰素。采用扫描电子显微镜(SEM)对PEBA2533膜的形貌进行表征。考察原料液浓度、温度对膜渗透汽化性能的影响。结果表明:随着溶液浓度的增加,PEBA2533膜溶胀性能增加,说明PEBA2533能够优先吸附香兰素;随原料液浓度增加,香兰素渗透通量增加,分离因子略微下降;原料液温度增加,香兰素渗透通量和分离因子都增加;并通过Arrhenius方程计算得到香兰素比水对温度更加敏感。PVCC系统中控制一级冷凝器温度为2℃时,一级冷凝器中结晶态香兰素通量为39.52 g·m-2·h-1,纯度在99%以上。  相似文献   

17.
Poly (ether-block-amide) (PEBA)/ceramic nanocomposite hybrid membranes were fabricated by dip-coating of ceramic nanocomposite porous support in PEBA solution and their performance in gas separation (CO2 and N2) was examined. Tubular supports were used as substrates for hybrid membranes and Poly (ether-block-amide) was applied as a selective layer. PEBA based on N6 and PEO was synthesized via a two step process. The formation of new ester bond between N6 and PEO in the synthesized copolymer was proved by FT-IR spectroscopy. AFM micrographs indicated that the morphology is the dispersion of high stiffness nanostructured PA domains in the amorphous region of PEO matrix. Experimental results showed that at high concentration of coating solution, a uniform PEBA layer was formed on the porous ceramic support with higher performance for the separation of CO2/N2 binary gas mixture.  相似文献   

18.
Pervaporation (PV) performances of silicalite‐filled polyether‐block‐amide (PEBA) membranes for separation of ethanol/water mixtures have been studied. The effects of silicalite content, ethanol concentration in feed, and feed temperature on the PV performances of the membranes have been investigated. It is found that addition of silicalite can improve PV performances of PEBA membranes. When the silicalite content is 2.0 wt %, both permeation flux and separation factor reach the maximum values, which are 833 g/m2h and 3.6, respectively. With increasing of ethanol in the feed and feed temperature, both separation factor and total flux increased. The higher permeation activation energy of ethanol (Eethanol = 21.62 kJ/mol) compared to that of water (Ewater = 18.33 kJ/mol) for the 2.0 wt% silicalite‐filled PEBA membrane accounts for the increase of the separation factor with feed temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号