首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
借助TEM、SEM、EBSD等显微组织分析手段及力学性能测试,研究了深海用超厚规格X70管线钢板的显微组织与力学性能的关系。实验结果表明:为满足深海用厚壁X70管线钢对纵向变形能力及DWTT(落锤撕裂实验)断裂韧性的严格要求,组织设计可采用针状铁素体+多边形铁素体的双相组织方法。针状铁素体为硬相、多边形铁素体为软相的双相组织中,屈强比随多边形铁素体数量的增加而降低,增大铁素体晶粒尺寸也能降低材料屈强比;在针状铁素体为基体的显微组织中,引入适量的细化多边形铁素体还可降低其有效晶粒尺寸,提高材料DWTT性能,但多边形铁素体体积分数过多、晶粒尺寸过大时,平均有效晶粒尺寸增加,DWTT性能反而降低。  相似文献   

2.
利用热模拟方法测定低屈强比耐火耐候钢不同速率冷却后的组织。对比轧后弛豫工艺与未弛豫工艺以及终冷温度对试验钢性能的影响,利用光学显微镜、扫描电镜、透射电镜分析不同工艺对钢轧后显微组织的影响。结果表明,随冷却速度的增加,钢板组织由多边形铁素体变为针状铁素体+粒状贝氏体复相组织;由于弛豫处理过程中过冷奥氏体部分转变为多边形铁素体,钢板屈服强度和屈强比均下降;随着终冷温度的降低,钢板的屈服强度和屈强比上升,与钢中针状铁素体的细化与M/A组元的弥散强化有关;轧后直接水冷,并控制终冷温度至500~560℃,可获得高强度与低屈强比的良好匹配。  相似文献   

3.
唐帅  刘振宇  王国栋 《轧钢》2010,27(1):6-10
采用Nb-V-Ti低成本成分设计及两相区直接淬火回火(DL-T)工艺,在实验室成功开发了低屈强比590/780MPa高强度建筑用钢。实验结果表明,直接淬火温度在750℃以下时可以得到一定量的铁素体,满足低屈强比双相组织的要求;在600~750℃直接淬火时,随着直接淬火温度的升高,钢板强度增加,伸长率降低;在600~700℃淬火时屈强比基本保持不变,当淬火温度升高到750℃时,组织中的铁素体和贝氏体共同对屈服强度产生影响,造成屈强比由0.76上升到0.82。  相似文献   

4.
介绍了首钢首秦金属材料有限公司开发研制X70管线钢的成分设计、控轧控冷工艺和钢板实际性 能,钢板成品组织为细小均匀的铁素体+少量针状铁素体,具有优良的综合力学性能。并分析了返红温度对钢板组织和屈强比的影响、终轧温度对钢板组织和断裂韧性的影响。  相似文献   

5.
文章介绍了本钢生产的厚度9.5mm的管线钢X70屈强比偏高的影响因素,并对化学成分、轧制工艺、金相组织、强化机理、钢板厚度及检验方式等影响屈强比的因素进行了研究。通过对本钢生产的不同厚度的管线钢X70力学性能进行分析,找出了其中影响屈强比的重要因素,对今后指导高级别管线钢的生产具有重要意义。提高管线钢中C、Mn、Cr等元素的含量,可增加固溶强化的作用,降低屈强比;提高卷取温度,同时降低进钢温度与降低冷却速率,使组织中以针状铁素体为主,还有少量的先共析铁素体,可降低管线钢屈强比;降低拉伸实验中的应力速率也可使屈强比降低。  相似文献   

6.
采用控轧+两相区淬火+回火(TMCP+ Q'+T)工艺制备了690 MPa级低屈强比高强度结构钢,重点研究了两相区淬火温度和回火温度对实验钢组织性能的影响.结果表明,随着两相区淬火温度的升高,实验钢中铁素体相体积分数减少,铁素体的形貌由多边形转变为针片状且更加细小均匀,马氏体相的体积分数逐渐增加,尺寸变大,但实验钢的力学性能并未出现明显的变化;随着回火温度升高,实验钢中针片状的铁素体发生回复再结晶,马氏体发生分解,实验钢的塑性和韧性提高,但强度降低,屈强比升高.  相似文献   

7.
赵喜伟  龙杰  庞辉勇  吕建会 《轧钢》2022,39(3):103-107
采用常规化学成分、轧制和调质热处理工艺生产的超高强EH690钢板屈强比在0.96以上,为了实现钢板较低的屈强比,一般采用低碳、高合金的化学成分设计,然后再进行两次淬火(常温淬火Q+两相区淬火Q')+回火的工艺,生产工艺复杂,生产成本较高。为此,采用低合金化学成分设计,合理的控轧控冷工艺及亚温淬火+回火的热处理工艺,研究了不同亚温淬火温度、回火温度对EH690钢板力学性能和显微组织的影响。结果表明:所设计化学成分的EH690钢板经过815 ℃的亚温淬火+480 ℃回火热处理后,钢板具有合适比例的软相铁素体和硬相马氏体双相组织,这种组织在保证钢板具有较好力学性能的同时屈强比也降低到0.90左右。采用该工艺,简化了生产工艺流程,降低了生产成本,实现了低屈强比超高强EH690钢板的工业化大规模生产。  相似文献   

8.
陆秀华 《铸造技术》2014,(4):664-666
研究了淬回火温度与冷却介质对抗震钢筋组织与性能的影响。结果表明:在780900℃之间淬火,抗震钢筋屈强比随着淬火温度的升高而逐渐升高;随着回火温度的升高,抗震钢的屈强比从93.0%降低到89.6%,降低幅度不太明显;在低温水中淬火,钢的屈强比和延性均较低;铁素体或残余奥氏体等软相组织有利于获得较低的屈强比和较好的延性。  相似文献   

9.
通过光学显微镜和电子显微镜对管线钢中常见的带状组织形貌进行观察,发现低碳管线钢中通常含 有珠光体带、针状铁素体带、板条贝氏体带、先共析铁素体和贝氏体/马氏体带、MA带等。带状组织的形成与成分局部偏析和TMCP工艺关系密切,不同类型的带状组织形成的原因不同,同时对钢板的性能影响也不同,特别是对高级别管线钢的屈强比和落锤性能影响明显。本文结合工业生产的数据分析发现珠光体带和MA带是引起DWTT断口分离的原因之一;由于钢板终轧温度和入ACC温度偏低形成的多边形铁素体、针状铁素体、贝氏体/马氏体带以及因冷却速度过大形成的板条贝氏体带是导致屈强比超标的原因之一。  相似文献   

10.
邢新 《钢管》2017,46(4):48-53
介绍了X70M钢级11.91 mm薄规格管线钢板的开发与生产情况;通过设计合理的化学成分、炼钢工艺、厚板工艺,及采用TMCP(控制轧制+ACC)厚板轧制工艺,成功开发出出口的薄规格X70钢级11.91 mm×2 803 mm管线钢钢板;分析钢板屈强比超标的原因,确定了控制薄规格钢板屈强比的关键因素。分析认为:厚板精轧道次分配量对钢板性能影响较大。随精轧末道次压下量的减少,钢板变薄导致其温降增大,引起钢板变形抗力和位错密度的急剧上升,从而引起钢板强度的上升;同时,较低温度下的轧制使冷却后的晶粒更加细小,因此屈服强度上升的幅度较抗拉强度上升的幅度大,引起钢板屈强比的上升。  相似文献   

11.
为了提高高强厚钢板低温韧性,对550 MPa级厚钢板进行了730-910℃淬火和600℃回火的热处理,研究不同淬火温度对其组织及力学性能的影响.实验结果表明:在亚温区淬火后回火,随淬火温度升高,试样强度和韧性均表现为先降低后升高,淬火温度升高到完全奥氏体区,试样强度进一步升高,但韧性降低.760℃亚温淬火后回火,试样组织为粗大的多边形铁素体,大量呈长条状、针状M/A组元断续分布在铁素体基体和晶界上,严重恶化韧性,力学性能最差.相比完全奥氏体化淬火后回火,850℃亚温淬火后回火,试样具有最佳强韧配合,这是由于组织细化,铁素体的出现增加了大角晶界比例,以及存在大量均匀位错胞状亚结构和稳定薄膜状残余奥氏体引起的.  相似文献   

12.
淬火温度对550MPa级厚钢板显微组织和力学性能的影响   总被引:1,自引:0,他引:1  
为了提高高强厚钢板低温韧性,对550 MPa级厚钢板进行了730—910℃淬火和600℃回火的热处理,研究不同淬火温度对其组织及力学性能的影响.实验结果表明:在亚温区淬火后回火,随淬火温度升高,试样强度和韧性均表现为先降低后升高,淬火温度升高到完全奥氏体区,试样强度进一步升高,但韧性降低.760℃亚温淬火后回火,试样组织为粗大的多边形铁素体,大量呈长条状、针状M/A组元断续分布在铁素体基体和晶界上,严重恶化韧性,力学性能最差.相比完全奥氏体化淬火后回火,850℃亚温淬火后回火,试样具有最佳强韧配合,这是由于组织细化,铁素体的出现增加了大角晶界比例,以及存在大量均匀位错胞状亚结构和稳定薄膜状残余奥氏体引起的.  相似文献   

13.
研究了控轧控冷工艺对工业试生产的50 mm厚V-N微合金钢中厚板组织与性能的影响,利用光学显微镜、扫描电镜、透射电镜、拉伸试验机等对试验钢微观组织、力学性能及钢板表面质量进行了观察及分析。结果表明:试验钢在终冷温度为630 ℃时,显微组织由针状铁素体、多边形铁素体和少量粒状贝氏体组成,可观察到V(C,N)析出粒子。试验钢中部屈服强度达599 MPa,伸长率为20%,-20 ℃时的冲击吸收能量为199 J。降低钢中Al元素的含量,钢板表面质量得到了明显的改善。  相似文献   

14.
研究了一种低碳含铜NV-F690钢在固溶淬火+回火(QT)和固溶淬火+两相区淬火+回火(QIT)热处理过程中的组织演变与性能。使用金相显微镜(OM)、扫描电镜(SEM)和透射电镜(TEM)分别研究了QT态和QIT态钢板的精细组织,测试了钢板的室温拉伸性能,在-60℃下进行了Charpy冲击试验(CVN)。经QT处理的NV-F690钢板的屈强比为0.97,经QIT处理的钢板的显微组织为板条状的二次回火LM+铁素体,其屈强比为0.89,低温韧性显著提高。  相似文献   

15.
目的 通过数值模拟,研究电源频率、电流密度、钢板移动速度对感应淬火过程中钢板温度场的影响规律,为实际应用中的参数选取提供参考。方法 利用ANSYS APDL语言建立钢板连续移动感应淬火过程的有限元计算模型,对不同工艺参数下的钢板温度场进行数值模拟。以优化后的工艺参数对20 mm厚的40Cr钢板进行感应淬火实验,利用热电偶对钢板关键点温度进行测量,通过金相显微镜和显微硬度计对淬火后的钢板进行微观组织和硬度分析。结果 钢板关键点温度计算结果与测量结果的最大误差率约为4%,表明该模型具有较高的计算精度。不同工艺参数下钢板温度场的分析结果表明:电源频率越高,电流密度越大,则加热速度越快,且随着电源频率的升高,高温区深度先增大后减小;而电流密度越大,钢板移动速度越慢,则高温区深度越大。钢板淬火后,其厚度方向上的微观组织基本上分为三个区:相变硬化区、热影响过渡区和未相变区。相变硬化区组织为细小的针状马氏体,最高硬度达700HV,淬硬层深度约6 mm;热影响过渡区中马氏体逐渐减少;未相变区仍保持原始珠光体和铁素体组织。结论 模拟计算结果与实验结果基本吻合,可用来指导实际应用中的参数选取。  相似文献   

16.
对120 mm厚的F460钢调质厚板采用相同的淬火回火温度,不同的淬火冷却速度处理,之后对钢板进行组织与性能对比,寻找该钢种的最佳热处理工艺。采用2 ℃/s冷速进行冷却的钢板,回火后强度最高,但是冲击性能不佳;适当降低淬火冷却速度后,钢板回火后强度有一定下降,但是冲击性能得到明显提升;继续降低淬火冷却速度,钢板回火后强度进一步下降,但是冲击性能提升有限。经组织分析,2 ℃/s冷速进行冷却淬火时,钢板回火后的组织为铁素体+贝氏体组织,组织中主要是贝氏体;冷却速度降低以后,钢板回火后组织为铁素体+退化珠光体组织,铁素体含量的增加,有利于钢板韧性的提升,残留奥氏体回火后形成的珠光体组织比较细小,能有效保证钢板的强度。通过对钢板的连续冷却转变曲线进行分析,钢板在冷却过程中先开始进行铁素体相变,溶质元素向奥氏体迁移。在钢板冷速较快时,铁素体中的碳化物迁移较少,奥氏体低温时转变成马氏体或者贝氏体;在钢板冷速较慢时,碳化物迁移到奥氏体内,提高奥氏体稳定性并保留到室温,形成残留奥氏体。残留奥氏体在后续的高温回火过程中,转变成珠光体。块状转变形成的铁素体组织与回火过程中形成的细小珠光体有利于钢板的强韧性匹配。  相似文献   

17.
针对壁厚33 mm、管径φ1 422 mm管线用X70钢板在-30 ℃下DWTT性能异常问题,利用扫描电镜和背散射电子衍射技术,分析了两种不同控轧工艺下X70管线钢板的微观组织、晶粒大小及取向等因素对其低温止裂性能的影响。结果表明:粗轧采用7道次,道次压下量21~35 mm,轧后冷却速率19.4 ℃/s的条件下,钢板可获得细小的多边形铁素体、针状铁素体、以及弥散分布的M/A岛组织;同时,由于采用大压下率,提高了钢板心部变形渗透能力,可以细化心部奥氏体晶粒,增加了心部大角度晶界比例;还有,由于钢板厚度方向晶界取向差接近且心部存在38.2%的大角晶界,均有利于提高管线钢板的止裂性能。  相似文献   

18.
通过扫描电镜观察、拉伸及低温冲击试验,研究了不同淬火工艺对含1%(质量分数)Ni的中锰钢组织和性能的影响。结果表明,随着淬火温度升高,试验钢的屈服强度和抗拉强度先增大后减小,随后再逐渐增大,低温冲击吸收能量具有相同变化趋势;中锰钢的最优调质工艺为900 ℃淬火后于600 ℃回火,其屈服强度、抗拉强度及伸长率分别能达到560 MPa、640 MPa及21.8%,-50 ℃ 冲击吸收能量达到270 J,获得了良好的综合力学性能。调质态试验钢在不同淬火温度下均获得了铁素体和回火马氏体组织,随着淬火温度升高,马氏体比例增加,晶粒尺寸逐渐减小。  相似文献   

19.
轧后控冷终冷温度对高强度管线钢屈强比的影响   总被引:7,自引:0,他引:7  
在一定的轧制制度和轧后控冷速度下,通过控制终冷温度得到不同微观组织的管线钢,从中研究了显微组织对管线钢屈强比的影响,结果表明,在较低终冷温度下得到的板条状贝氏体型管线钢比较高终冷温度下获得的针状铁素体型管线钢具有更低的屈强比,而板条贝氏体型管线钢中细小弥散的析出对降低屈强比也是有利的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号