首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
在平面磨床上采用白刚玉砂轮对灰铸铁HT250进行磨削淬硬试验,研究磨削用量对灰铸铁HT250磨削淬硬层的影响。结果表明:灰铸铁HT250磨削后淬硬层由表及里依次是熔化层、完全淬硬层、过渡层和基体。熔化层由二次渗碳体、残留奥氏体和碳化物组成;完全淬硬层由马氏体、残留奥氏体和条状石墨组成;过渡层由马氏体、珠光体、残留奥氏体和条状石墨组成。改变磨削用量对淬硬层高硬度区显微硬度值没有显著影响,其硬度在800~900 HV0.2之间。磨削深度增加或者工件进给速度减小,都会使淬硬层深度增大。磨削深度和工件进给速度会对淬硬层的均匀性产生影响,致使切入端、中间端、切出端淬硬层深度不同,在本试验条件下当进给速度vw=0.4 m/min时淬硬层的均匀性较好。  相似文献   

2.
在MKL7132X6/12数控强力成形磨床上对42CrMo钢进行磨削淬硬加工试验,通过光学显微镜、扫描电镜、显微硬度计等测试仪器测量和分析磨削淬硬层的宏观组织、显微组织、硬度以及淬硬层深度,研究原始组织对42CrMo钢磨削淬硬层组织和硬度的影响。结果表明:完全淬硬层表层由针状马氏体和少量未溶碳化物组成;中间层由略粗针状马氏体和少量未溶碳化物组成;过渡层组织因原始组织而异。原始组织对完全淬硬区组织和硬度无明显影响,显微硬度620~700 HV。但随着工件材料原始组织均匀性的提高,略粗马氏体组织距工件表面的距离变大,且磨削淬硬层深度变大。  相似文献   

3.
在MM7132平面磨床采用单程、往复磨削对调质态42CrMo钢进行磨削淬硬试验.结果表明:0.2 mm 三次往复磨削、0.3 mm两次往复磨削、单程0.6 mm磨削条件下淬硬层均获得了马氏体组织.0.2 mm 三次往复磨削淬硬层为细小的针状马氏体组织,其显微硬度最高值为824.2 HV;0.3 mm两次往复磨削淬硬层为板条状马氏体组织,其显微硬度最高值为752.2 HV,单程0.6 mm磨削淬硬层为体积略大的板条状马氏体组织,淬硬层的硬度最高值为724.4 HV.  相似文献   

4.
在平面磨床上采用双道磨削方式对40Cr钢进行了磨削淬硬试验,研究了横向上淬硬层组织形貌及显微硬度分布规律。结果表明,双道磨削时,横向上越靠近工件中部地区,淬硬层厚度越薄,磨削区可以分成完全淬硬区、过渡区、回火区和重磨区(无重磨时存在未淬区)。横向上淬硬层中间部分存在显微硬度较低的“软化带”,且随着磨削深度的增加或工件进给速度的减小,软化带长度增加;当表面硬化层没有未淬区域时,随着砂轮重叠量的增加,软化带长度也增加。  相似文献   

5.
刘克铭  马壮  张连勇  刘波 《热加工工艺》2012,41(10):210-212
在磨削深度为0.1~0.6 mm的条件下对调质态、正火态及退火态42CrMo钢进行了磨削淬火试验。结果表明:磨削淬火后,三种原始组织试样磨削淬火后的完全淬硬区显微硬度为510~878 HV。正火、调质及退火态试件的淬硬层厚度分别为1.75、1.5和1.25 mm。磨削淬火后,调质态的42CrMo钢完全淬硬层组织为略大的板条状马氏体组织,正火态的42CrMo钢完全淬硬层的马氏体组织最为细小,退火态的42CrMo钢完全淬硬层板条状马氏体尺寸居于二者之间。  相似文献   

6.
40Cr钢外圆磨削表面淬硬层的组织   总被引:1,自引:0,他引:1  
研究了外圆磨削淬硬试验中磨削用量对表面淬硬层组织的影响.结果表明,磨削深度ap=0.2 mm时,外圆磨削淬硬件表层局部存在未淬硬区;磨削深度ap>0.2 mm时,由于砂轮切入和切出时磨削热的作用,表面淬硬层局部存在回火区.淬硬区和回火区具有相同的显微硬度分布规律,但各区的最高硬度值随着该区组织的不同而异.在实际应用中,通过合理组合磨削深度ap和进给速度vw,可获得满意的外圆磨削表面淬硬层.  相似文献   

7.
在MM7132平面磨床上对曲轴用材料-42CrMo钢进行了磨削淬火实验、在ML-100磨粒磨损试验机上进行了磨损试验,提高了农用柴油发动机的曲轴强度及耐磨性,42CrMo钢淬硬层的最高硬度达到了860HV,淬硬层的厚度达到了1.5mm;淬硬层由条状马氏体组成,过渡区由少量马氏体及回火索氏体组成;磨削淬火后试件的耐磨性提高了3倍。  相似文献   

8.
砂轮特性对40Cr钢磨削淬硬层的影响   总被引:6,自引:2,他引:4  
以平面磨削淬硬试验为基础,研究了不同砂轮特性条件下40Cr钢磨削淬硬层的组织与性能。结果表明,在磨削淬硬加工中的热、机械耦合作用下,砂轮特性对磨削淬硬层的马氏体组织形貌及其高硬度区硬度值无显著影响。随着砂轮粒度或砂轮硬度的提高,磨削淬硬层深度相应增加。与树脂结合剂砂轮相比,采用陶瓷结合剂砂轮可使淬硬层深度增加近40%。  相似文献   

9.
刘克铭  马壮  张连勇  刘波 《热加工工艺》2012,41(14):215-217
在MM7132平面磨床上对42CrMo钢进行了磨削淬火试验,研究了冷却方式及试样尺寸对淬硬层厚度及淬硬区组织的影响。结果表明:在湿磨条件下,随磨削深度的增加,淬硬层厚度总体呈增加趋势,淬硬层厚度均达到1.5 mm。磨削深度为0.2 mm、试件高度为100 mm干磨时,淬硬层厚度为0.75 mm,淬硬层显微硬度最高为771.8 HV;试件高度为150 mm时淬硬层厚度为0.5 mm,淬硬层显微硬度最高为605.4 HV。干磨时马氏体组织更细小。  相似文献   

10.
采用横流CO2激光器对半高速钢5Cr5MoSiV表面进行了激光淬火试验,并对淬硬层组织及性能做了研究。结果表明,半高速钢激光淬火层主要分为4个区域:完全淬火区,不完全淬火区,过渡区和基体。完全淬火区的显微组织为马氏体+残留奥氏体+少量碳化物。淬硬层显微硬度比基体显微硬度提高了1.5倍。激光功率与扫描速率的改变对淬火后的表面硬度影响较小,但功率或扫描速率的改变会对淬硬层深度产生明显影响。  相似文献   

11.
研究了磨削深度对42CrMo钢强化层组织与硬度的影响。结果表明,在不同磨削深度条件下,强化层的马氏体粗细不均,表层显微硬度随磨削深度先增加后降低,完全强化层显微硬度在720~800 HV0.1之间,比基体硬度提高了2倍。随着磨削深度的增加,强化层厚度最小值也增加,在磨削深度为0.6 mm时强化层厚度可达1.8 mm。  相似文献   

12.
球墨铸铁的激光相变硬化   总被引:6,自引:0,他引:6  
利用TJ—HL-T5000激光器,对QT600-3球墨铸铁进行激光相变硬化研究,测量了淬硬层深度和硬度分布,并对其金相组织进行了观察和分析。结果表明,QT600—3球墨铸铁激光淬硬层组织的表层结构致密,硬度可达920HV,淬硬深度约为0.5mm,从表面沿深度方向出现包围石墨球的马氏体壳组织,对提高耐磨性有利。  相似文献   

13.
在精密卧式磨床M7132A上,研究磨削速度对42CrMo钢进行磨削淬火强化层硬度与组织的影响。结果表明:完全强化层的显微硬度值在724~824 HV0.1,与基体相比提高3~4倍,且随着磨削速度的提高,在工件表面的显微硬度也相应增加;完全强化层是混合型的马氏体组织,其中以条片状马氏体居多,且随着磨削速度的增加,强化层的组织细化;完全强化层的深度也随着磨削速度的增加而增加。  相似文献   

14.
GCr15钢表面激光淬火的组织与性能   总被引:9,自引:1,他引:9  
利用HL-1500无氦横流CO2激光加工机对GCr15钢表面进行激光淬火处理。采用SSX-550型扫描电子显微镜(SEM)、XJL-02A立式金相显微镜(OM)、DMH-2LS努氏显微硬度计、ML-10滑动摩擦磨损试验机和ZF-3恒电位仪等设备对不同功率下相变硬化层的显微组织及性能进行研究。结果表明:相变硬化区的组织为细小针状马氏体和少量球状碳化物,过渡区的组织为马氏体、残留奥氏体、铁素体和碳化物;试样的硬化层硬度比基体提高了2.2~3.5倍,当激光功率为1050W时,硬化层深度最大,可达0.7mm,耐磨性比基体提高3倍,耐蚀性也显著提高。  相似文献   

15.
通过光学显微镜、扫描电镜、XRD测试、硬度梯度测试等研究16MnCr5低碳合金钢凸轮轴渗碳淬火+低温回火后沿径向的显微组织和硬度。结果表明,940 ℃强渗适用于16MnCr5钢凸轮轴,显微组织沿凸轮轴径向变化明显,渗碳层表面组织为高碳的针状马氏体和10%左右的残留奥氏体,表层硬度可达750 HV,有效硬化层深度可达1.5 mm以上,基体组织为贝氏体和低碳马氏体的混合组织。  相似文献   

16.
氩弧硬化对硼铸铁表面组织和性能的影响   总被引:2,自引:0,他引:2  
采用氩弧重熔技术在硼铸铁表面进行表面硬化改性处理,研究了钨极氩弧硬化工艺参数对硼铸铁表面组织和性能的影响.结果表明,硼铸铁表面采用氩弧热源淬火时,淬硬层与基体之间过渡区明显,硬化区组织为莱氏体,过渡区组织为马氏体 残留奥氏体 少量石墨.氩弧硬化工艺参数对硬化层的深度、硬度和裂纹率影响较大,工作电流增加或扫描速度减小时,硼铸铁表面硬化层深度增加,硬度降低,裂纹率下降.在保证不出现裂纹的条件下,硬化层表面的硬度值最高可达64 HRC,硬化层显微硬度值最高可达1196 HV0.1,其耐磨性明显高于未经处理和经激光表面处理的硼铸铁.  相似文献   

17.
杨莉  肖龙  娄高峰 《热加工工艺》2006,35(18):19-21
研究了钨极氩弧扫描速度对硼铸铁表面硬化效果的影响规律。结果表明:扫描速度增加。硬化层宽度、深度减小,而硬度提高,裂纹率增大;硬化层硬度沿层深的分布是从表及里由高而低,在过渡区下降缓慢;沿层宽的分布是层中心最高。向两侧逐渐降低,直至硼铸铁基体达到最低值;在保证不出现裂纹的条件下,硬化层表面的最高硬度值可达61.4HRC,硬化层最高显微硬度值可达1156.4HV0.1;硼铸铁材料采用氩弧热源淬火时。淬硬层与基体之间过渡区明显,硬化区组织为莱氏体,过渡区为马氏体、残余奥氏体和少量石墨。  相似文献   

18.
研究了钨极氩弧扫描速度对硼铸铁表面硬化效果的影响规律。结果表明:扫描速度增加,硬化层宽度、深度减小,而硬度提高,裂纹率增大;硬化层硬度沿层深的分布是从表及里由高而低,在过渡区下降缓慢;沿层宽的分布是层中心最高,向两侧逐渐降低,直至硼铸铁基体达到最低值;在保证不出现裂纹的条件下,硬化层表面的最高硬度值可达61.4HRC,硬化层最高显微硬度值可达1156.4HV0.1;硼铸铁材料采用氩弧热源淬火时,淬硬层与基体之间过渡区明显,硬化区组织为莱氏体,过渡区为马氏体、残余奥氏体和少量石墨。  相似文献   

19.
采用等离子束对硼铸铁进行了表面强化,对等离子强化层的显微组织、显微硬度和耐磨性进行了研究。结果表明:硼铸铁经等离子束淬火处理后,其强化层的组织为隐针马氏体+残余奥氏体+片状石墨+硼化物,硬度为未处理的2 ̄3倍,强化层的显微硬度随深度呈非线性关系,最高硬度达1 000 HV0.1。且随工作电流的增加,强化层的深度增加,表面硬度下降,次表层硬度增大且硬化层的耐磨性大幅度提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号