首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
王中学  赵培林  张可  路峰 《轧钢》2016,33(6):34-37
在Gleeble3800热模拟试验机上,测定了HQ100热轧高强钢的动态CCT曲线,并通过光学显微镜和透射电镜观察试验钢在不同冷却条件下的显微组织形貌,以及采用显微硬度法检测其维氏硬度。结果表明:在0.1~60 ℃/s冷速范围内,试验钢存在珠光体、贝氏体、马氏体转变区;随着冷速的增加,试验钢硬度增加;冷速高于10 ℃/s时,试验钢屈服强度达到900 MPa以上,满足高强度工程机械用钢的要求;组织中存在大量50 nm以下含Ti、V、Mo元素的析出相粒子,其强化机理以沉淀强化和相变强化为主。  相似文献   

2.
为实现对高V、N微合金钢轧制-冷却工艺过程中组织、析出相的精准控制,利用Gleeble-1500D热模拟实验机研究了轧后不同冷速下实验钢的热膨胀曲线、相变规律、过冷奥氏体动态连续冷却转变曲线(动态CCT曲线),并着重研究了微观组织演变行为、显微硬度和纳米碳氮化物析出行为对冷却速率的敏感性。结果表明:冷却速率低于3 ℃/s时,实验钢显微组织由铁素体和珠光体组成;当冷却速率位于3 ℃/s时,发生贝氏体相变,基体组织由铁素体、珠光体和贝氏体组成;冷却速率为8 ℃/s时,珠光体组织消失,马氏体组织开始出现,基体组织由沿晶铁素体、贝氏体和马氏体组成;当冷却速率达到20 ℃/s时,基体组织中马氏体占主,并由少量先共析铁素体和贝氏体组成。此外,冷却速率对纳米碳氮化物的析出行为也具有显著影响,冷速处于1 ℃/s以内时,多边形铁素体中纳米析出相直径和数密度具有较强的冷却速率敏感性,纳米析出相直径随冷速提升显著降低,数密度随冷速提升而提高;冷速由1 ℃/s增加至3 ℃/s时,纳米析出相直径进一步降低,而数密度趋于稳定;当冷速继续增至5 ℃/s时,纳米析出相直径保持稳定,数密度呈现下降趋势。研究还发现,贝氏体组织中纳米析出相较少,贝氏体不利于纳米相析出。基于上述组织演变与析出规律的研究,工业化试制出了屈服强度700MPa以上、满足抗震要求的高V、N微合金钢。  相似文献   

3.
在Gleeble-3500热模拟机上测定了Nb-V微合化金中碳非调质钢在不同冷却速率下的膨胀曲线,并联合金相-硬度法,绘制出了Nb-V试验钢的动态CCT曲线。依据所绘试验钢动态CCT曲线,对试验钢在不同冷却速率下组织的转变转变情况进行了分析。结果表明:冷却速率低于2℃/s时,Nb-V钢的显微组织为铁素体和珠光体,冷却速率超过2℃/s时,钢中组织可以观察到贝氏体,随着冷却速率的增加贝氏体含量也明显增加;冷却速率超过10℃/s时,组织中开始出现马氏体;冷却速率超过15℃/s后Nb-V钢显微组织全部为马氏体。贝氏体转变的临界冷却速率为7~10℃/s,马氏体转变的临界冷却速率为10~15℃/s。  相似文献   

4.
利用Formaster-F全自动相变测量装置对超低碳微合金钢进行不同冷却速度的热处理,采用金相显微镜观察试验钢的微观组织,采用450SVD数显维氏硬度计测量试验钢的维氏硬度。结果表明,当冷却速度<1 ℃/s时,试验钢的显微组织均为多边形铁素体,维氏硬度平均最大值为177.0 ;当冷却速度达到3 ℃/s时出现准多边形铁素体,维氏硬度平均最大值为187.3 HV5;当冷却速度达到5 ℃/s时钢的显微组织中出现粒状贝氏体,此时维氏硬度平均最大值为193.3 HV5;20 ℃/s时出现贝氏体铁素体,准多边形铁素体消失,维氏硬度平均最大值为221.6 HV5;当冷却速度达到50 ℃/s时钢中出现马氏体,显微组织为三相组织即粒状贝氏体+贝氏体铁素体+马氏体,维氏硬度平均最大值达到224.0 HV5;冷却速度达到165 ℃/s后,钢中的显微组织仍为三相组织,此时试验钢的平均维氏硬度值达到本试验的最大值263.3 HV5。在所有的冷速下,试样中均未发现珠光体。HV5  相似文献   

5.
利用Gleeble-3800热模拟试验机测定了自行研制的新型无碳贝氏体非调质钢在不同冷却速率下连续冷却转变的热膨胀曲线,结合显微组织和显微硬度,绘制了试验钢的过冷奥氏体动态连续冷却转变曲线。结果表明:试验钢冷却速率为0. 05℃/s时,组织为粒状贝氏体和少量的无碳贝氏体;冷却速率在0. 1~0. 3℃/s之间时,组织主要为无碳贝氏体;冷却速率到达0. 5℃/s时,组织为无碳贝氏体和少量马氏体;冷却速率在1℃/s以上时,组织为马氏体。力学性能测试表明无碳贝氏体钢实现了高强度与高韧性的结合,改善了珠光体-铁素体钢强度不足的问题。  相似文献   

6.
在Gleeble-3500热模拟试验机上对Nb和Nb-Ti微合金耐候钢进行连续冷却转变与形变热模拟试验,观察比较两类钢显微组织、析出相与力学性能;利用TEM观察第二相粒子析出物状态。结果表明:随着冷却速度的提高,组织将由珠光体向贝氏体到马氏体转变。当冷却速度达到5℃/s时Nb微合金钢就发生马氏体转变;而Nb-Ti微合金钢在10℃/s才获得马氏体组织,即马氏体转变延迟。形变热模拟试验中,Nb-Ti微合金钢获得的铁素体更加细小,提高了材料的低温韧性;在TEM观察下,Nb C和(Nb、Ti) C粒子在晶内与晶界上是随机分布的,其中Nb C粒子尺寸大约20 nm,体积分数约为0. 6%,(Nb、Ti) C粒子尺寸大约75 nm,体积分数约为1. 33%; Nb-Ti微合金钢的硬度比Nb微合金钢的硬度值更高,说明粒子体积分数比粒子尺寸对硬度的贡献更大。  相似文献   

7.
针对当前不含Mo 低成本900 MPa级工程机械用钢的生产,采用Formastor-FⅡ相变仪,研究了900 MPa级工程机械用钢的连续冷却相变行为,分析了试验钢在连续冷却条件下的显微组织、显微硬度变化规律和贝氏体相变过程;结合热膨胀法和金相-硬度法绘制了试验钢的连续冷却转变曲线。结果表明:当冷却速率为0.25~0.5 ℃/s时,试验钢组织主要为铁素体和粒状贝氏体;冷却速率为1~2 ℃/s时,试验钢组织由粒状贝氏体和板条贝氏体组成;冷却速率为5~20 ℃/s时,试验钢组织为板条贝氏体和互锁状贝氏体,随着冷却速率的提高,板条贝氏体相变温度区间变窄,互锁状贝氏体相变温度区间变宽。冷却速率为5 ℃/s时,以板条贝氏体相变为主导,晶界形核速率高于晶内形核速率;冷却速率为10~20 ℃/s时,以互锁状贝氏体相变为主导,晶内形核速率高于晶界形核速率。冷却速率为0.25~2 ℃/s时,试验钢显微硬度随着冷却速率的增加而增加,硬度值从188HV升高到239HV;冷却速率为2~5 ℃/s时,出现硬度平台;冷却速率为5~20 ℃/s时,试验钢显微硬度随冷却速率的增加而增加,硬度值从240HV升高到270HV。  相似文献   

8.
采用Gleeble热模拟试验机研究了微合金元素Nb对高Ti耐候钢奥氏体连续冷却转变行为的影响,通过光学显微镜(OM)、透射电镜(TEM)以及硬度测试等手段比较了0.050%Nb和无Nb试验钢连续冷却转变后显微组织和硬度的变化。结果表明,Nb能抑制铁素体相变,促进贝氏体相变。冷却速度由5 ℃/s提高到10 ℃/s,两种试验钢的晶粒细化效果均最显著,无Nb钢和0.050%Nb钢硬度分别增加了22 HV0.2和25 HV0.2。冷却速度为40 ℃/s时,无Nb试验钢中析出物主要为6~13 nm球形Ti(C, N)复合析出物;含Nb试验钢中主要为5~12 nm球形(Ti, Nb)(C, N)和10~15 nm方形(Ti, Nb)(C, N)复合析出物,含Nb试验钢析出物较多,因此析出强化作用更强。在高Ti耐候钢中,Nb产生的晶粒细化作用并不显著。在相同冷速下,0.050%Nb试验钢的硬度略高于无Nb试验钢,最大差值仅为11 HV0.2。  相似文献   

9.
在Gleeble-1500热模拟机上采用热膨胀法,测定了一种Mn-Si-V系贝氏体辙叉钢的连续冷却转变曲线。利用DMI 5000M型光学显微镜、Hitachi H-800透射电镜和显微维氏硬度计对不同冷速下试验钢的显微组织和硬度进行分析,并就合金元素对贝氏体相变和显微组织的作用进行讨论。结果表明,试验贝氏体钢的相变点为:Ac_1=730℃、Ac_3=873℃、Ms=320℃。以0.05℃/s的冷速冷却时,试验贝氏体钢获得以上贝氏体为主的组织;在0.05~1.0℃/s的冷速范围内,试验贝氏体钢可以获得以无碳化物贝氏体为主的组织;当冷速大于1.0℃/s,试验贝氏体钢得到无碳化物贝氏体/马氏体复相组织,并且随冷速增加马氏体含量增大;当冷速达到8.0℃/s,试验贝氏体钢获得以低碳马氏体为主的组织。  相似文献   

10.
在Gleeble-1500D热模拟试验机上测定DP980双相钢的连续冷却相转变曲线(CCT曲线),结合金相显微组织及维氏硬度,分析了不同冷却速度连续冷却时的组织转变,阐明了冷却速度与组织演变以及硬度变化的关系。结果表明:DP980钢在很大的冷速区间内都仅发生铁素体和贝氏体转变,只有当冷却速度达到50℃/s时,才开始发生马氏体转变。随冷速的提高,尤其在0.5~20℃/s时,硬相的贝氏体含量逐渐增加,硬度随冷速的提高增加的较为明显;冷却速率为20~50℃/s时,硬度提高趋于平缓。  相似文献   

11.
为实现高品质Ti微合金化高强钢的工业化生产,通过热模拟试验研究了加热温度、终轧温度、精轧阶段变形量、冷却速率和卷取温度对Ti微合金化高强钢组织性能的影响规律。结果表明,随着加热温度的升高,铁素体晶粒尺寸显著增大,试验钢硬度增大。随着终轧温度的降低和冷却速率的增大,铁素体晶粒尺寸逐渐减小,贝氏体含量增加,试验钢硬度增大。随着精轧阶段变形量的增大,铁素体含量增加,组织得到细化,细晶强化和相变强化共同作用的结果使得试验钢硬度逐渐降低。随着卷取温度的降低,试验钢的硬度先升高后降低,当卷取温度为610 ℃时,试验钢硬度最高。  相似文献   

12.
采用低Mo及Ti的复合微合金化,设计3种试验钢配以合理的控轧控冷工艺,成功开发出低成本460 MPa级耐火钢。力学性能测试及显微组织分析结果表明,控轧控冷后水冷,试验钢板获得耐火钢的理想组织:粒状贝氏体和M/A岛。随Ti含量的增加,3种试验钢的平均晶粒尺寸递减。3种试验钢的室温屈服强度都大于460 MPa,600 ℃保温3 h的高温屈服强度都大于307 MPa,具有良好的高温力学性能。在相变强化、析出强化、细晶强化及位错强化的共同作用下,不同Ti含量的试验钢获得了良好的高温力学性能。0.07%Ti含量试验钢的YS值(600 ℃屈服强度/室温屈服强度)为0.68,完全满足耐火钢的使用标准。  相似文献   

13.
采用热模拟试验机研究了添加Ni、Cr、Cu的车厢用微合金化耐候钢的过冷奥氏体连续冷却相变行为,并建立了试验钢的静态和动态CCT曲线。结果表明,在无变形条件下,试验钢在各冷速下均不能获得全铁素体组织,冷却速率为0.2 ℃/s时,室温组织中的铁素体含量最高,为41%,平均晶粒尺寸为36.9 μm;在施加30%变形量的条件下,试验钢在0.2 ℃/s冷速下可获得全铁素体+极少量珠光体组织,平均晶粒尺寸为17.9 μm,具有较好的耐腐蚀能力。当冷却速率在0.2~0.5 ℃/s之间(铁素体+珠光体相变区间),提高冷却速率可以增加试验钢的硬度,在施加30%变形量和0.2 ℃/s冷却速率条件下,试验钢的宏观硬度值达181 HV30。  相似文献   

14.
通过两种成分非调质CT80连续油管用钢现场生产板卷工艺组织性能对比,分析了冷却速度、卷取温度、Mo和Nb元素含量等工艺参数对实验钢组织性能的影响。结果表明:当冷却速度由52℃/s提高到69℃/s后,铁素体形态为针状铁素体,实验钢屈服强度提高25 MPa;抗拉强度提高30 MPa。实验钢在530℃卷取时,组织中出现了3%的珠光体组织,抗拉强度低于性能指标10 MPa。而在400℃卷取时,组织中出现了3%的块状马氏体组织,使得屈服强度低于性能指标20 MPa;抗拉强度提高到690MPa。Mo元素含量提高,促进针状铁素体转变,实验钢淬透性提高,有利于获得M/A岛组织,保证获得高强度低屈强比性能。Nb元素含量提高,细晶强化和析出强化作用更明显。  相似文献   

15.
通过Gleeble 1500型热模拟试验机对含Nb高碳试验钢进行了不同奥氏体化温度和冷速下的热处理。采用光学显微镜、扫描电镜、硬度测量等试验手段对试验钢的显微组织、硬度和珠光体片层间距进行了观察和测量。结果表明:奥氏体化温度为950 ℃时,试验钢淬火后晶粒尺寸为34 μm,硬度为813 HV5,以0.1~5 ℃/s冷速冷却至室温的组织为珠光体+铁素体;而奥氏体化温度为1200 ℃时,淬火后晶粒尺寸为134 μm,硬度为827 HV5,以0.1~1 ℃/s冷速冷却至室温的组织为珠光体+铁素体,冷速为5 ℃/s时,组织为针状马氏体+少量的铁素体。在1220 ℃以上Nb全部固溶在奥氏体中,奥氏体化温度过高会导致晶粒过分长大。珠光体片层间距随着奥氏体化温度的升高和冷却速率的提升而变小,片层间距的减小可使硬度值提高。  相似文献   

16.
采用DIL805A热膨胀仪测定了Ni含量分别为1.53%、1.72%、1.81%、2.06%的EQ70海洋工程用钢在不同冷速下的热膨胀曲线,结合组织观察和维氏硬度测定绘制其连续冷却转变曲线。结果表明,冷速在0.5 ℃/s以下,试验钢的组织为贝氏体,冷速超过2 ℃/s时,组织全部转变为马氏体。随着Ni含量增加,试验钢的Ac3几乎不变,Ac1和Ms降低,贝氏体转变的温度区间缩小,贝氏体转变的冷速范围扩大,贝氏体的形貌也发生变化,马氏体形貌没有发生明显变化。  相似文献   

17.
通过OM、SEM、TEM和维氏硬度计等手段研究了不同等温冷却时间对Ti-V-Mo复合微合金钢组织转变、析出行为及硬度的影响,探讨了影响硬度变化的因素。结果表明,Ti-V-Mo复合微合金钢奥氏体化后在630 ℃等温冷却0~3 h,随着等温时间的延长,基体中的铁素体比例不断增加而马氏体和贝氏体比例逐渐降低,硬度呈现先升高再趋于平稳,再升高至其最大值,最后略有下降。60~1200 s时,硬度出现平台是因为纳米级(Ti, V, Mo)C粒子的沉淀强化效果能够弥补相变导致基体软化造成的硬度损失;3600 s时,硬度达到最大值为457 HV,此时纳米级(Ti, V, Mo)C粒子产生的沉淀强化效果最佳。  相似文献   

18.
张瑞琦  刘志伟  孙傲  郭晓宏  杨玉  高磊 《轧钢》2020,37(5):12-15
高速动车组转向架构架对高速动车组的运行品质、行车安全起到至关重要的作用。为向355 MPa级转向架构架用钢的工业试制提供指导,在Gleeble-3800热模拟试验机上进行了热模拟试验,结合热膨胀法和金相-硬度法,绘制了355 MPa级转向架构架用钢动态连续冷却转变曲线,研究了试验钢在连续冷却条件下的显微组织演变规律。结果表明,冷速小于1 ℃/s时,其组织主要为多边形铁素体和珠光体;冷速大于5 ℃/s时,贝氏体类组织快速增加;冷速达到50 ℃/s时,为板条贝氏体组织。因此,对于355 MPa级转向架构架用钢,冷速控制在1~5 ℃/s较为适宜,其组织主要由比例适中软硬性相结合的铁素体、珠光体和贝氏体构成,可以获得优良的强韧性匹配。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号