首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王飞跃  邹婷婷  辛巍  杨建军 《红外与激光工程》2020,49(12):20201064-1-20201064-6
基于飞秒激光照射的改形控性技术是近些年发展起来的新兴微纳加工技术,其在快速、大面积、周期性亚波长结构的制备上展现出了独特优势。文中利用该技术在氧化石墨烯薄膜表面开展亚波长光栅结构的快速制备,并针对其中的加工机理、形貌变化及其液体浸润性进行了详细研究。通过改变飞秒激光功率和扫描速度等参数,实验获得了具有不同深宽比和表面“粗糙度”的还原氧化石墨烯样品,实现了液体接触角在15°~75°范围内可控的浸润性,并且其接触角在空气中放置20天后平均增加20°。文中的理论和实验结果为飞秒激光微纳加工和改性处理技术的发展奠定了基础,未来有望促进结构化石墨烯衍生材料在液滴收集、微流控等方面的应用。  相似文献   

2.
使用波长为1 030 nm飞秒脉冲激光在M35高速钢表面加工微凹坑阵列,运用光学显微镜、白光干涉仪和接触角测量仪分别测量样品表面的三维形貌和接触角,探究不同参数对样品表面形貌和接触角的影响规律。结果表明,随能量密度和扫描次数增加,微凹坑的半径和深度均增大,M35高速钢表面接触角减小,样品表面亲水性增大,微凹坑间距减小可提高M35高速钢表面的亲液性。试验结果可为高速钢表面润湿性的研究提供参考。  相似文献   

3.
王翼猛  管迎春 《中国激光》2022,(10):199-224
随着社会发展和医疗健康事业的进步,医用金属植入物等医疗器械在临床应用中出现的细菌感染、生物相容性不佳等瓶颈亟待解决。近年来,飞秒激光以其加工精度高、适用材料广、热效应低、灵活可靠等优势,成为医用材料表面改性备受关注的新技术。本文针对体液光谱检测、植入物表面细胞行为调控、口腔抗菌这三个具体临床应用场景,简述了制备表面微纳复合结构实现生物功能的基本原理,以及多功能微纳复合结构的制备原理,梳理了飞秒激光诱导微纳结构的应用进展及研究现状,以期为相关研究人员提供线索和依据。  相似文献   

4.
利用飞秒激光振荡器产生的脉冲对镀有铬层的玻璃和石英基片进行微加工,发现两种样品表面均有波纹状的微突起结构产生。这些微突起结构离开样品表面的高度为10~300nm不等,并且随着激光功率的增大而增加,在一定功率下达到饱和状态。它们的形貌、尺寸和高度取决于入射飞秒激光的能流以及飞秒脉冲的参数。通过化学方法证明了这些微突起结构是由玻璃和石英的主要成分SiO2组成的,并非样品表面的铬元素。此外,通过选取适当的飞秒激光功率和样品加工速度,制作了两种不同周期和线宽的光栅结构,显示出飞秒激光振荡器良好的加工性能。  相似文献   

5.
为了降低金属植入物与人体之间的排斥反应以及提高医用植入物材料的生物活性,本研究团队利用不同的表面加工方法对Zr55Cu30Ni5Al10表面进行改性,以制备天然骨的仿生微纳结构;然后将加工后的样品浸泡于模拟体液中,使其表面生成羟基磷灰石(HA),研究不同加工方法下样品表面的润湿性以及HA沉积特性。结果表明:相较于传统的表面改性方法,纳秒激光结合飞秒激光的加工方法具有更加优异的加工效果,加工表面的水接触角由62°减小到26°,亲水性得到了大幅提升;纳秒激光结合飞秒激光加工的微纳结构不仅为HA的沉积提供了更多空间,而且其上的纳米颗粒有利于Ca2+与PO■的集聚,加速HA晶核的形成,从而生成均匀、稳定的HA沉积层,提高Zr55Cu30Ni5Al10表面HA的沉积效果。  相似文献   

6.
利用飞秒激光加工系统对PMMA表面制备微结构,调节激光的加工次数和微结构的尺寸参数,研究PMMA表面的润湿性机理.激光制备出光栅结构和方柱结构,采用超景深三维显微镜和接触角测量仪对微结构表面形貌和润湿性进行测量分析.研究了不同的激光加工次数和微结构尺寸对表面润湿性的影响,结果表明:PMMA表面微结构的接触角随光栅结构间...  相似文献   

7.
孙树峰  王萍萍 《红外与激光工程》2018,47(12):1206009-1206009(5)
针对微/纳机电系统(MEMS/NEMS)零部件加工制造难题,研究具有亚衍射极限空间分辨率的飞秒激光双光子聚合加工方法,搭建钛蓝宝石飞秒激光微纳加工系统,对液态聚合物材料进行飞秒激光双光子聚合加工工艺试验研究。结果表明:随着激光功率的降低,单个固化点的尺寸减小,加工分辨率提高;扫描步距减小,所加工工件的表面粗糙度数值减小,但加工效率降低。基于CAD软件设计出微米墙和纳米线构成的三维微纳结构,利用飞秒激光双光子聚合加工得到该三维微纳结构实物,通过优化工艺参数加工出直径小于100 nm的纳米线,从而证明飞秒激光双光子聚合加工方法为微/纳器件的制造提供了一种有效方法。  相似文献   

8.
为实现对超快激光诱导金属钛改变趋势的定性控制及材料改变范围的定量控制, 开展了飞秒和皮秒脉冲激光分别与金属钛烧蚀的对比实验研究。随后使用激光扫描共聚焦显微镜、X射线光电子能谱和透射电子显微镜分别就激光脉冲时间宽度变化对被烧蚀金属钛的表面形貌与烧蚀深度、化学成分、微结构状态的影响规律进行了分析。研究发现: 随着激光脉冲时间宽度从飞秒增加到皮秒量级, 被烧蚀金属钛的表面形貌质量逐渐变差, 最终烧蚀产物的化学成分愈加复杂, 微结构状态的无定形化程度也随之增加。最终认为伴随激光脉冲时间宽度增加, 金属钛中热累积效应的增强而造成被烧蚀材料内部更为严重的热与机械损伤是导致上述实验现象产生的主要原因。  相似文献   

9.
氧化锆陶瓷以其优异的力学性能和生物相容性被广泛用作牙科修复材料。通过表面改性工艺调控氧化锆陶瓷的表面润湿性,可以进一步拓展其在不同领域的应用。基于此,笔者提出了一种高效、低成本的激光加工+硅油修饰+热处理复合工艺,并采用该工艺制备了超疏水氧化锆陶瓷表面。首先通过纳秒激光加工在氧化锆陶瓷表面诱导出周期性多级微纳结构,而后利用硅油异丙醇混合溶液(硅油体积分数为0.4%)修饰+低温热处理来降低激光处理后氧化锆陶瓷的表面能,制备出了表面接触角高达153.8°具有超疏水特性的氧化锆陶瓷。加工前的氧化锆陶瓷的接触角为80.4°±2.1°,展现出亲水性;经纳秒激光加工后,液滴完全浸润表面,接触角变为0°,表面转变为超亲水表面。采用硅油异丙醇混合溶液修饰+低温热处理工艺实现了表面超亲水特性向超疏水特性的转变。超疏水氧化锆陶瓷在空气环境和胶带剥离实验中分别保持了优秀的稳定性和耐久性。通过改变激光的扫描速度及扫描间距可以精准调控液滴在材料表面的润湿性和黏附性。所提方法相较于传统激光加工方法提高了制备效率,降低了生产成本,有望扩展超疏水氧化锆陶瓷在医疗领域的应用。  相似文献   

10.
钛合金具有优良的综合性能,作为医用金属植入材料广泛应用于临床医学,而在钛合金植入物表面进行微造型有助于提高钛合金的生物相容性。采用1064nm波长的皮秒激光在钛合金(Ti-6Al-4V)表面进行微造型实验,并验证微造型的生物相容性。设计正交实验,通过扫描电子显微镜、扫描探针显微镜和共聚焦显微镜分析了样件表面形貌,建立微造型几何尺寸与激光参数的关系,确立了最优工艺参数,完成钛合金微造型样件制备。进行了大鼠骨髓间充质干细胞培养和免疫荧光观察细胞骨架实验。实验表明,微造型对细胞生长起到促进和引导作用。  相似文献   

11.
报道了一种利用飞秒激光直写后再用化学腐蚀熔石英表面制备得到网格状微流体沟道,然后在其表面覆盖一层PDMS薄膜制备网格状半密闭微流体通道的方法。微流体沟道的形成机制可以定义为飞秒激光辐照导致基底材料改性,而改性区域对HF水溶液的溶解度增强。使用光学显微镜和扫描电子显微镜(SEM)表征了网格状微流体通道的形貌。此外,为了测试该微流体结构的流动特性,进行了液体注入实验。  相似文献   

12.
为探讨采用飞秒激光直接刻写样品取代传统光刻掩膜版方式来实现微机电系统(MEMS)加工短流程工艺的可行性,采用中心波长为800nm、脉宽为50fs的激光对100硅片(薄膜为350nm~500nm厚的氮化硅)进行实验,分析了飞秒激光材料加工特性.分析和实验结果表明,飞秒激光比纳秒、皮秒激光更适用于短流程工艺.MEMS加工短流程工艺减少了加工流程,缩短了加工周期.通过对激光脉冲能量和平台移动速度的控制可实现精确微加工.  相似文献   

13.
采用飞秒激光微加工技术对聚甲基丙烯酸甲酯(PMMA)表面进行微加工,研究PMMA表面不同微结构的润湿性。首先对飞秒激光去除透明聚合物材料的机理进行研究并建立了材料去除模型,制备出PMMA表面光栅结构和方柱结构;采用超景深三维显微镜和接触角测量仪对微结构表面形貌和润湿性进行测量分析。结果表明:飞秒激光加工PMMA表面微结构可以将PMMA润湿性从亲水向疏水状态转变,微结构间距过小会导致激光加工时飞溅的熔融物堆积在结构通道。  相似文献   

14.
崔静  张杭  路梦柯  翟巍  杨广峰 《激光与红外》2020,50(9):1035-1042
为探究超快激光对金属材料的烧蚀特性,利用飞秒脉冲激光加工TC4,研究加工后TC4表面的形貌特点,分析飞秒激光加工金属的作用机理。当激光能量密度为8.05 J/cm2时,用白光干涉和扫描电镜观察不同扫描速度下材料表面的形貌变化。随着扫描速度的降低,表面条纹变深,条纹上方的二级微纳凸起尺寸增大,粗糙度增加,条纹侧面出现经典低空间频率条纹。从高斯光束特点和光斑重叠率角度对各种形貌的形成机理进行分析,高斯光束光斑中心处能量密度高,条纹上方形成凸起,侧面形成经典条纹;当光斑重叠率越大,单位面积内能量密度就越大,表面微结构尺寸也随之增大。  相似文献   

15.
为了在Ti6Al4V表面加工不同的微结构,改变其润湿性,使其表面具有超疏水性,采用纳秒光纤脉冲激光对Ti6Al4V表面进行了微加工,研究了脉冲能量密度和扫描间距对点阵、线阵及网格3种微结构的表面形貌及润湿性的影响,建立了接触角与表面特征参量Sa, Sd的关系。结果表明, 脉冲能量和扫描间距对点阵、线阵及网格结构的表面形貌参量Sa, Sd均有所影响,且对网格结构的Sa和Sd的影响程度最大,线阵结构次之,点阵结构最小;激光加工Ti6Al4V后,其表面皆会发生从超亲水到疏水甚至超疏水的自发转变,不同的脉冲能量、扫描间距加工的微结构均对表面润湿性有不同程度的改善,其中网格结构对表面湿润性的改善最好,线阵次之,点阵最差;网格、线阵、点阵结构的最大及最小接触角分别为165°, 160.5°, 142.4°;132.9°, 97°, 94.6°,具有最大接触角的表面参量Sa, Sd分别为0.97μm, 1.38;1.62μm, 1.04;4.14μm, 2.39。该研究对改善Ti6Al4V表面润湿性具有一定参考意义。  相似文献   

16.
肖蒲庐  陈观华  陈宇  张翔  袁孝 《中国激光》2023,(16):175-185
通过改变飞秒激光的能量密度和扫描次数,分别采用90°和60°两种激光交叉线扫描方式,在钛合金表面制备了一系列方形和菱形微结构,系统地研究了飞秒激光参数对表面形貌和润湿性的影响。利用X射线光电子能谱测量分析了激光织构前后的表面化学成分变化。结果表明:表面结构的轮廓形貌更加依赖于激光的能量密度,而扫描次数主要影响结构的特征尺寸。不同的飞秒激光参数下获得的织构钛合金表面表现出不同程度的亲水性提升。较高的激光能量密度和扫描次数有利于增大钛合金表面的粗糙度,同时导致大量的金属氧化物富集,从而促进了液滴的浸润。  相似文献   

17.
基于皮秒激光的超疏水镍铝青铜合金表面的制备   总被引:1,自引:0,他引:1  
利用皮秒激光器在镍铝青铜合金表面制备了具有不同微观形貌的微纳米复合结构,再通过硬脂酸进行表面修饰。采用扫描电镜和X射线衍射仪等表征了所得表面的形貌和化学成分。研究结果表明,经皮秒激光加工和硬脂酸修饰后,表面的接触角都达到150°以上。不同的脉冲能量密度下,试样表面的微观形貌和润湿性不同。随着脉冲能量密度的增大,修饰后的试样表面的滚动角逐渐减小,当脉冲能量密度为6.85 J/cm^2时,滚动角减小到7°,随着脉冲能量密度的进一步增加,滚动角又逐渐增大。耐蚀性测试结果表明:超疏水镍铝青铜合金表面具有更好的耐腐蚀性能。采用优化的工艺参数可以在镍铝青铜合金上加工出超疏水表面,有助于提高其耐腐蚀性能。  相似文献   

18.
激光诱导偏振依赖纳米结构是一种有效实现纳米图案化的技术,并且一直备受研究者的青睐。利用飞秒激光微加工技术,对6H-SiC晶体表面激光诱导偏振依赖纳米结构特性进行了研究。通过改变入射激光加工偏振态和延迟时间样品表面诱导产生了直径约为150 nm的球形纳米颗粒、椭圆形纳米颗粒和空间周期约为150 nm的高空间频率表面条纹结构。实验结果表明,入射激光偏振特性会直接影响诱导产生的微结构形貌,并且优先入射的飞秒激光对最终产生的表面微结构形貌有决定性作用。初步探讨了偏振依赖纳米结构形成的物理机制,表面等离激元(surface plasmon polariton, SPP)在表面微纳米结构的产生过程中扮演着重要角色,研究结果对激光诱导表面周期结构(laser-induced periodic surface structures, LIPSS)可控制备具有重要意义。  相似文献   

19.
使用CO2红外激光对商业聚酰亚胺膜(PI)胶带进行物理改性,激光烧结PI表面产生微结构凸起状的石墨烯.采用接触角测试仪表征了液态金属(EGaIn)在PI未处理光滑面与石墨烯微结构粗糙面上的接触角,结果表明,激光对PI的物理改性使得液态金属与基底的接触角从135°±2°提高至140°±2°.利用液态金属在不同表面表现不同...  相似文献   

20.
皮秒激光加工制备钛酸锶单晶超亲水表面   总被引:1,自引:1,他引:0  
报道了一种通过皮秒激光加工快速制备钛酸锶(SrTiO3)单晶超亲水表面的方法。室温下,采用皮秒激光加工系统,在SrTiO3单晶表面刻蚀出整齐的周期性线排列沟槽结构,使SrTiO3单晶表面浸润性向亲水方向转变。研究了不同划线间隔对表面接触角大小的影响。结果表明:接触角的大小随划线间隔的变化而变化,间隔越大,接触角越大;当沟槽间隔小于150μm时,得到超亲水表面。其机理是:根据Wenzel模型,增大表面粗糙度可以使表面浸润性向亲水方向转变;并且沟槽结构产生了虹吸现象,也增强了亲水性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号