首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 359 毫秒
1.
一次淬火马氏体及其体积分数的控制是淬火-配分(QP)钢组织性能控制的基础。QP钢的连续退火生产中,均热温度及快冷结束温度对一次淬火马氏体体积分数起决定作用。利用PE(para-equilibrium)的热力学平衡假设计算了不同临界区温度均热时奥氏体中的碳含量,并采用透射电镜检测了淬火后马氏体中的碳含量,验证了热力学计算结果的可靠性。通过热膨胀试验研究了不同临界区温度均热时马氏体相变的体积分数与冷却结束温度之间的关系,建立了适用于临界区均热的一次淬火马氏体相变体积分数与冷却结束温度关系的数学模型,该模型可为QP钢连续退火工艺的制定提供依据。  相似文献   

2.
利用SEM、XRD分析及拉伸试验,研究了逆转变+淬火-配分(ART+QP)复合工艺对完全淬火后0.22C-2.0Mn-1.8Si钢组织性能的影响。结果表明:经ART+QP工艺处理后,该钢组织为亚温铁素体、贝氏体/马氏体和均匀分布的残留奥氏体。逆转变奥氏体富集Mn、C元素,淬火-配分过程中碳自马氏体配分至残留奥氏体时二次富C,使其稳定化,因此该钢室温下获得残留奥氏体的含量超过15%。在拉伸变形过程中残留奥氏体转变成马氏体的TRIP效应,使得钢材在变形过程中获得稳定的加工硬化能力,实现了良好的强塑性结合,抗拉强度达到1233 MPa,屈服强度为893 MPa,均匀伸长率29.6%,强塑积高达36 GPa·%以上。  相似文献   

3.
对一种中碳中锰QP钢进行了研究,利用连退模拟试验机进行了热处理试验,测试了力学性能,观察了微观组织。试验结果表明,试验钢室温下组织为板条马氏体与残留奥氏体;随淬火冷却终止温度的提高,抗拉强度及伸长率均呈现先增加后降低的趋势,淬火冷却终止温度为210℃时,抗拉强度为1630 MPa,伸长率达到17.04%,具有最优力学性能;随配分温度升高,抗拉强度呈现下降趋势,而伸长率逐渐增大;配分温度为400℃,配分时间由10 s延长到120 s后,抗拉强度降低了57 MPa,而伸长率提高了2.98%。  相似文献   

4.
用膨胀法和高温激光共聚焦显微镜分别对CrNi3Si2MoVNb钢经淬火和碳再配分(QP,Quenching and Partitioning)工艺的相变及马氏体相变的组织不均匀性进行表征,讨论了组织不均匀性对QP工艺钢微观组织的影响。结果表明,CrNi3Si2MoVNb钢第一次淬火过程中先形成马氏体在某些区域的批次增加,将原奥氏体晶粒分割成尺寸不同的若干区域,尺寸较大的未转变奥氏体稳定性较差,最终淬火过程中容易发生马氏体转变成二次淬火马氏体,而尺寸较小的更易于成为残留奥氏体。  相似文献   

5.
从Q&P钢的生产工艺、合金元素的作用、C配分热力学与动力学和工艺参数的影响4个方面介绍了目前Q&P钢的研究现状,并对Q&P钢未来的研究方向作出展望。Q&P钢经过淬火和配分热处理工艺,在室温下组织为马氏体和残留奥氏体,马氏体提供高强度,残留奥氏体在受到应力或应变的情况下会产生TRIP效应,在提高强度的同时增强塑性变形能力。Q&P钢核心在于获得更多稳定的残留奥氏体,其关键取决于C的配分过程,而通过热力学理论模型计算可以预测最佳淬火温度。添加合金元素可以起到抑制碳化物的析出、细化奥氏体晶粒和稳定奥氏体的作用。工艺参数对Q&P钢显微组织和力学性能的影响较大,淬火温度决定了一次马氏体的含量和后续的配分过程,配分温度和配分时间显著影响C原子的扩散动力,选择合适的工艺参数尤为重要。  相似文献   

6.
研究了两相区不同退火温度及不同配分温度的淬火和碳再分配热处理工艺对低碳硅-锰系Q&P钢的显微组织、精细结构、力学性能及残留奥氏体含量的影响。结果表明,采用两相区退火的Q&P工艺室温组织为板条马氏体、铁素体、薄膜状和块状残留奥氏体;随退火温度的升高,实验钢抗拉强度和屈服强度呈上升趋势,伸长率呈下降趋势,残留奥氏体含量先上升后下降;随配分温度的升高,实验钢抗拉强度呈下降趋势,屈服强度、伸长率和残留奥氏体含量呈上升趋势;经Q&P工艺处理后的实验钢强塑积可达28215 MPa·%。  相似文献   

7.
采用CCT-AY-Ⅱ热处理连退模拟机,研究了不同配分时间下,两相区退火温度淬火和碳再分配热处理工艺对低碳硅-锰系Q&P钢的显微组织、精细结构、力学性能及残留奥氏体含量的影响。结果表明,采用不同配分时间的两相区连续退火的Q&P工艺室温组织为板条马氏体、铁素体、薄膜状或块状残留奥氏体;随配分时间的增加,钢的抗拉强度和残留奥氏体含量呈下降趋势,伸长率和强塑积呈上升趋势;当配分时间为300 s时,试验钢抗拉强度达到1000 MPa,其伸长率为27.3%,强塑积高达27 300 MPa.%。  相似文献   

8.
QP钢经淬火配分(QP)工艺处理,所得组织由马氏体和残留奥氏体复合相共同组成,因其具有高强度和高塑性而备受关注。QP工艺的关键在于获得更多的残留奥氏体和提高残留奥氏体的稳定性。C从马氏体向奥氏体配分是稳定残留奥氏体的重要因素,并且受到其他因素的影响,一直是QP钢领域研究的重点和难点。本文从C配分的热力学、动力学,主要合金元素的影响,热处理工艺,组织和力学性能的关系4个方面,简要综述了国内外QP钢的研究进展,并对未来的研究方向进行了展望。  相似文献   

9.
对0.26C-1.72Si-1.56Mn钢进行了不同碳配分时间的淬火-配分(Q-P)处理,并研究了其组织,特别是二次淬火中奥氏体的分解转变。结果表明:Q-P处理后都形成了板条马氏体+二次淬火组织,且二次淬火组织中都存在孪晶马氏体;碳配分时间在10~300 s范围内,Q-P处理后残留奥氏体中的C含量均高于1.0wt%,残留奥氏体的含量不低于11%(体积分数),有利于钢韧性的改善;初次淬火后未转变奥氏体的形态和尺寸是影响其稳定性的关键因素,初次马氏体板条界膜状奥氏体容易形成残留奥氏体;相对于块状未转变奥氏体,条状未转变奥氏体容易形成二次淬火马氏体及片状残留奥氏体。  相似文献   

10.
对碳-锰-硅钢淬火后在不同温度下进行配分处理,采用SEM结合EBSD技术对实验钢显微组织、残余奥氏体含量及力学性能进行表征。结果表明:随配分温度的升高,实验钢的抗拉强度降低,主要因为马氏体脱碳软化所致。残余奥氏体含量与伸长率变化趋势相同,由于在拉伸变形过程中残余奥氏体发生马氏体相变即TRIP效应,从而提高塑性。因此在300℃配分处理后的性能优异,抗拉强度为1328 MPa,伸长率为13%,残余奥氏体含量达到4.78%。  相似文献   

11.
研究了不同Q&P工艺参数对0.3C-1.35Mn-1.30Si钢力学性能的影响。结果表明:淬火温度主要影响马氏体的含量;配分温度与配分时间影响碳配分的程度,最终影响残留奥氏体的含量。微观组织的含量影响力学性能。伸长率的变化趋势与残留奥氏体量的变化趋势基本一致,Q&P钢的塑性主要与残留奥氏体的含量有关,残留奥氏体中的含碳量为1.2%~1.3%。  相似文献   

12.
利用光学显微镜、拉伸试验机、扫描电镜、XRD和EBSD等手段对22MnB5钢的微观组织及力学性能进行了表征,并重点分析了一步法Q&P工艺处理后的22MnB5钢中残留奥氏体含量及残留奥氏体中碳含量与力学性能的关系。结果表明:采用一步法Q&P工艺,可以获得抗拉强度超过1400 MPa,伸长率超过15%的超高强度22MnB5钢板。随着淬火温度从240 ℃升高至300 ℃,22MnB5钢的组织由马氏体转变为马氏体+残留奥氏体复相组织,试样中的残留奥氏体含量逐渐增加。相同配分温度延长配分时间,残留奥氏体含量呈现先增加后降低趋势。不同热处理工艺下残留奥氏体中的平均碳含量为1.49wt%。采用一步法Q&P热处理工艺可以使残留奥氏体中富集碳,提高残留奥氏体稳定性,强塑积可以达到22.14 GPa·%。  相似文献   

13.
借助Thermo-Calc、光学显微镜、扫描电镜、X射线衍射仪、洛氏硬度计及冲击磨损试验机对Fe-0.45C-1.6B高硼钢铸态和经Q&P工艺处理后的组织和性能进行分析。结果表明:高硼钢铸态组织由铁素体、马氏体及残留奥氏体构成的基体和共晶硼化物组成。经Q&P工艺处理发现,高硼钢在Ms点以下为马氏体等温转变,随着淬火时间的增加,基体中残留奥氏体越来越多,在淬火时间为120 s时达到极限。随着配分时间的增加,高硼钢中残留奥氏体增加,配分时间为80 s时残留奥氏体量最多,但是由于较多的残留奥氏体不能支撑硼化物,因此高硼钢的耐磨性降低。  相似文献   

14.
通过SEM,TEM,EBSD和纳米硬度等多种手段对经Q&P(quenching and partitioning)工艺处理的低碳CrNi3Si2MoV钢中的马氏体进行了表征,并探讨马氏体在单轴拉伸过程中的作用.研究结果表明:一次马氏体发生了C配分和回火析出现象,容易腐蚀;二次马氏体呈淬火态特征,由1个马氏体领域构成,板条尺寸较小,约为0.1—0.2μm,C含量和纳米硬度均高于一次马氏体,在变形过程中能够协同组织变形,起到强化作用,而氧化物夹杂和大尺寸的析出物是微裂纹产生和扩展的主要原因.  相似文献   

15.
对含硅的低碳中锰钢进行Q&P处理,获得了回火马氏体、新生马氏体和残留奥氏体的混合组织,利用SEM、TEM、XRD和拉伸试验机等检测手段研究不同热处理工艺下微观组织结构及力学性能。结果表明,随着淬火温度的提高,试验钢的抗拉强度先降低后升高,屈服强度则一直降低,总伸长率先升高后降低。淬火温度为250 ℃时,试验钢的综合力学性能最好,抗拉强度为1331 MPa,断后伸长率为17.3%,强塑积可达23 GPa·%。这主要是由于组织中一定比例的膜状残留奥氏体发挥TRIP效应,拉伸变形阶段表现出持续的加工硬化能力,获得更好的强塑匹配。淬火温度为270 ℃时,由于残留奥氏体的稳定性降低,组织内存在大量新生马氏体,使塑性下降。  相似文献   

16.
采用扫描电镜、X射线衍射等研究了连续退火工艺中退火、淬火和配分等关键过程参数对中锰Q&P钢碳元素分配行为的影响,并分析了相应工艺条件下残留奥氏体量与碳含量的关系。结果表明:两相区退火温度的提高会导致奥氏体中的碳含量下降,微观组织表现为奥氏体含量增加,渗碳体量减少;退火时间10~60 s时,随着退火时间的延长,奥氏体含量和碳含量急剧增加,60 s后基本保持稳定;试验条件下淬火温度对残留奥氏体及碳含量的影响不显著;配分温度350~500℃时,随着配分温度的提高,奥氏体含量和碳含量呈现先增加后减小的趋势,配分温度450℃时均达到最大值;延长配分时间,残留奥氏体含量呈现先减少后增大再减少的趋势,残留奥氏体中的碳含量先减小后增加。  相似文献   

17.
为满足汽车轻量化的发展要求, 先进高强度钢已成为研究热点, 近年来以淬火-分配(Q&P)理念为基础的工艺研究备受关注。本文将Q&P理念引入热轧工艺过程中, 并进行了实验研究, 即采用直接淬火(DQ)工艺结合非等温条件下碳分配处理(碳分配过程在模拟卷取过程中进行)。实验结果表明: 实验钢组织由马氏体、残余奥氏体及少量铁素体组成。当卷取温度为350 ℃时, 实验钢组织中残余奥氏体体积分数较高, 达到11.5%, 同时抗拉强度达到1 370 MPa, 伸长率为14.20%, 强塑积为19.5 GPa·%。进行TEM观察, 发现马氏体板条束之间存在以薄膜状形态分布的残余奥氏体。  相似文献   

18.
采用SEM、TEM、XRD、室温拉伸等手段,研究了0.1C-7.2Mn钢两相区温轧淬火配分处理钢的组织形貌、碳化物析出、残留奥氏体体积分数及其中的C含量及力学性能。结果表明,随着温轧压下率的增大,两相区温轧淬火配分处理后试样的马氏体板条得到细化并逐渐平行于轧制方向;两相区温轧淬火配分处理后试样的显微组织由马氏体和残留奥氏体组成,并且有碳化物析出;随着温轧压下率的增大,碳化物的平均尺寸粗化,残留奥氏体的体积分数逐渐升高,并且残留奥氏体中的C含量先升高后降低,屈服强度和抗拉强度均先升高后降低,伸长率先降低后升高。当温轧压下率为80%时,强塑积达到最高31.50 GPa·%。  相似文献   

19.
直接淬火-碳分配处理后高强度钢的组织与力学性能   总被引:1,自引:0,他引:1  
采用一种中碳低合金高强度钢,在轧后进行直接淬火后再快速升温至400~600℃进行碳分配处理的直接淬火-碳分配(Quenching Partitioning)处理(DQP),研究DQP工艺对钢的组织与力学性能的影响。利用扫描电镜和透射电镜观察组织及析出物的变化,采用X射线衍射仪分析了钢中残留奥氏体体积分数。结果表明:DQP处理后,钢的组织为板条马氏体组织和残留奥氏体。马氏体板条宽150~250 nm;残留奥氏体位于马氏体板条间,随工艺参数不同,其体积分数在4%~8%。钢中析出物尺寸大多为20 nm左右。经过DQP处理后,钢的抗拉强度达到1200 MPa以上,伸长率15%~17%。-40℃冲击功达到30 J以上。合理的淬火终淬温度可以获得更多残留奥氏体,而升高分配温度会增加析出、并使析出物长大,这是提高钢的强度和韧性的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号