首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of reduction with methane and oxidation with oxygen of Mn3O4 supported on Mg-ZrO2 prepared by freeze granulation has been investigated. The reactivity experiments were performed in a thermogravimetric analyzer (TGA) using different reacting gas concentrations and temperatures in the range of 1073-1223 K. The oxygen carrier particles showed high reactivity during both reduction and oxidation at all investigated temperatures. An empirical reaction model, which assumes a linear relation between time and conversion, was used to determine the kinetic parameters for reduction and oxidation, with chemical reaction being the main resistance to the reaction. The order of reaction found was 1 with respect to CH4 and 0.65 with respect to O2. The activation energy for the reduction reaction was 119 and for the oxidation reaction. The reactivity data and kinetic parameters were used to estimate the solid inventory in the air and fuel reactor of a CLC system. The optimum solid inventory obtained was at a value of ΔXs=0.4. At these conditions, the recirculation rate of oxygen carrier between air and fuel reactor was per MW of fuel, which could be accomplished in an industrial reactor. The high reactivity of the Mn3O4/Mg-ZrO2 with both methane and oxygen showed that this is a very promising oxygen carrier for CLC.  相似文献   

2.
Syngas combustion characteristics of oxygen carrier particles have been investigated. Experiments were performed on four oxygen carrier particles in a fluidized bed reactor. All four oxygen carrier particles showed high gas conversion, high CO2 selectivity, and low CO concentration in the reducer and very low NOx (NO, NO2, N2O) emissions in the oxidizer. Moreover, all particles showed good regeneration ability during successive reduction-oxidation cyclic tests up to the 10 th cycle. The results indicate that inherent CO2 separation, NOx-free combustion, and long-term operation without reactivity decay of oxygen carrier particles are possible in a syngas fueled chemical-looping combustion system with NiO/bentonite, NiO/NiAl2O4, Co x O y /CoAl2O4, and OCN-650 particles. However, Co x O y /CoAl2O4 represented slight decay of oxidation reactivity with the number of cycles increased and the oxidation rate slower than other particles.  相似文献   

3.
The use of ilmenite as an oxygen carrier in chemical-looping combustion   总被引:2,自引:0,他引:2  
The feasibility of using ilmenite as oxygen carrier in chemical-looping combustion has been investigated. It was found that ilmenite is an attractive and inexpensive oxygen carrier for chemical-looping combustion. A laboratory fluidized-bed reactor system, simulating chemical-looping combustion by exposing the sample to alternating reducing and oxidizing conditions, was used to investigate the reactivity. During the reducing phase, 15 g of ilmenite with a particle size of 125–180 μm was exposed to a flow of 450 mLn/min of either methane or syngas (50% CO, 50% H2) and during the oxidizing phase to a flow of 1000 mLn/min of 5% O2 in nitrogen. The ilmenite particles showed no decrease in reactivity in the laboratory experiments after 37 cycles of oxidation and reduction. Equilibrium calculations indicate that the reduced ilmenite is in the form FeTiO3 and the oxidized carrier is in the form Fe2TiO5 + TiO2. The theoretical oxygen transfer capacity between these oxidation states is 5%. The same oxygen transfer capacity was obtained in the laboratory experiments with syngas. Equilibrium calculations indicate that ilmenite should be able to give high conversion of the gases with the equilibrium ratios CO/(CO2 + CO) and H2/(H2O + H2) of 0.0006 and 0.0004, respectively. Laboratory experiments suggest a similar ratio for CO. The equilibrium calculations give a reaction enthalpy of the overall oxidation that is 11% higher than for the oxidation of methane per kmol of oxygen. Thus, the reduction from Fe2TiO5 + TiO2 to FeTiO3 with methane is endothermic, but less endothermic compared to NiO/Ni and Fe2O3/Fe3O4, and almost similar to Mn3O4/MnO.  相似文献   

4.
The feasibility of using three different solid fuels in chemical-looping combustion (CLC) has been investigated using NiO as oxygen carrier. A laboratory fluidized-bed reactor system for solid fuel was used, simulating a chemical-looping combustion system by exposing the sample to alternating reducing and oxidizing conditions. In each reducing phase 0.2 g of fuel was added to the reactor containing 20 g oxygen carrier. The experiments were performed at 970 °C. Compared to previously published results with other oxygen carriers the reactivity of the used Ni-particles was considerably lower for the high-sulphur fuel and higher for the low-sulphur fuel. Much more unconverted CO was released and the fuel conversion was much slower for high-sulphur fuel such as petroleum coke, suggesting that the nickel-based oxygen carrier was deactivated by the presence of sulphur. The NiO particles also showed good reactivity with methane and a syngas mixture of 50% H2 and 50% CO. For all experiments the oxygen carrier showed good fluidizing properties without any signs of agglomeration.  相似文献   

5.
Behavior of ilmenite as oxygen carrier in chemical-looping combustion   总被引:1,自引:0,他引:1  
For a future scenery where will exist limitation for CO2 emissions, chemical-looping combustion (CLC) has been identified as a promising technology to reduce the cost related to CO2 capture from power plants. In CLC a solid oxygen-carrier transfers oxygen from the air to the fuel in a cyclic manner, avoiding direct contact between them. CO2 is inherently obtained in a separate stream. For this process the oxygen-carrier circulates between two interconnected fluidized-bed reactors. To adapt CLC for solid fuels the oxygen-carrier reacts with the gas proceeding from the solid fuel gasification, which is carried out right in the fuel-reactor. Ilmenite, a natural mineral composed of FeTiO3, is a low cost and promising material for its use on a large scale in CLC.The aim of this study is to analyze the behavior of ilmenite as oxygen-carrier in CLC. Particular attention was put on the variation of chemical and physical characteristics of ilmenite particles during consecutive redox cycles in a batch fluidized-bed reactor using CH4, H2 and CO as reducing gases. Reaction with H2 was faster than with CO, and near full H2 conversion was obtained in the fluidized-bed. Lower reactivity was found for CH4. Ilmenite increased its reactivity with the number of cycles, especially for CH4. The structural changes of ilmenite, as well as the variations in its behavior with a high number of cycles were also evaluated with a 100 cycle test using a CO + H2 syngas mixture. Tests with different H2:CO ratios were also made in order to see the reciprocal influence of both reducing gases and it turned out that the reaction rate is the sum of the individual reaction rates of H2 and CO. The oxidation reaction of ilmenite was also investigated. An activation process for the oxidation reaction was observed and two steps for the reaction development were differenced. The oxidation reaction was fast and complete oxidation could be reached after every cycle. Low attrition values were found and no defluidization was observed during fluidized-bed operation. During activation process, the porosity of particles increased from low porosity values up to values of 27.5%. The appearance of an external shell in the particle was observed, which is Fe enriched. The segregation of Fe from TiO2 causes that the oxygen transport capacity, ROC, decreases from the initial ROC = 4.0% to 2.1% after 100 redox cycles.  相似文献   

6.
Kinetic data of a promising oxygen carrier of NiO/NiAl2O4 have been established from experiments in a small fluidized bed batch reactor using methane. The particles were prepared by spray-drying using commercially available raw material and selected as the best candidates from an earlier screening study. The particles clearly showed high reactivity, with a maximum gas yield between 86% and 93% in the temperature interval 750 °C to 950 °C when using a bed mass and a gas flow corresponding to only 6 kg/MWfuel. A comparison of the reactivity with data from TGA experiments showed that the reactivity generally was faster in the batch fluidized bed in the investigated temperature interval. A simple reactor model using kinetic data from the batch fluidized bed reactor and the TGA predicted a minimum mass of 9–24 kg/MWfuel of oxygen carrier particles for full gas yield of methane to carbon dioxide in the fuel reactor. Comparison with experiments performed in a 10 and 120 kW CLC reactor with the same type of oxygen carrier showed that even when employing 13 to 50 times the amount of oxygen carrier theoretically needed for complete gas conversion, full gas yield was not obtained in the circulating systems. Hence it is of great importance to consider the fluid dynamics and gas-solid contact when modeling the fuel reactor of a chemical-looping combustor.  相似文献   

7.
Chemical-looping combustion (CLC) is a technology that reduces the carbon dioxide emissions from fossil fuel power stations. A nickel supported on -alumina oxygen carrier is investigated in this study, for use in a CLC process. Oxygen carriers with various nickel loadings on alumina are prepared according to the incipient wetness technique. The reactivity and stability of the prepared oxygen carrier samples, during repeated reduction–oxidation cycles, is demonstrated using temperature programmed reduction and oxidation. Pulse chemisorption results show that the dispersion and active crystallite diameter of the nickel particles remain constant over multiple reduction–oxidation cycles, indicating that no agglomeration occurs up to a nickel loading of 20 wt% supported on alumina. The stability and reactivity of the oxygen carriers, under industrial relevant conditions, are also investigated using the CREC fluidized bed riser simulator. It is observed that a 20 wt% nickel supported on alumina oxygen carrier is stable under industrial relevant fluidized bed reaction conditions, converting 76% of methane to carbon dioxide and water vapor, the combustion products. The metal support interaction is assessed by H2 temperature programmed desorption, which shows that the metal-support interaction decreases as more nickel is loaded onto the alumina support.  相似文献   

8.
Chemical-looping combustion, CLC, is a combustion concept with inherent separation of CO2. The fuel and combustion air are kept apart by using an oxygen carrier consisting of metal oxide. The oxygen carriers used in this study were prepared from commercially available raw materials by spray-drying. The aim of the study was to subject the particles to long-term operation (>1000 h) with fuel and study changes in particles, with respect to reactivity and physical characteristics. The experiments were carried out in a 10-kW chemical-looping combustor operating with natural gas as fuel. 1016 h of fuel operation were achieved. The first 405 h were accomplished using a single batch of NiO/NiAl2O4-particles. The last 611 h were achieved using a 50/50mass-mixture of (i) particles used for 405 h, and (ii) a second batch of particles similar in composition to the first batch, but with an MgO additive. Thus, at the conclusion of the test series, approximately half of the particles in the reactor system had been subjected to >1000 h of chemical-looping combustion. The reason for mixing the two batches was to improve the fuel conversion. Fuel conversion was better with the mixture of the two oxygen carriers than it was using only the batch of NiO/NiAl2O4-particles. The CO fraction was slightly above the equilibrium fraction at all temperatures. Using the oxygen carrier mixture, the methane fraction was typically 0.4-1% and the combustion efficiency was around 98%. The loss of fines decreased slowly throughout the test period, although the largest decrease was seen during the first 100 h. An estimated particle lifetime of 33 000 h was calculated from the loss of fines. No decrease in reactivity was seen during the test period.  相似文献   

9.
Chemical-looping technologies have obtained widespread recognition as power or hydrogen production units with inherent carbon capture in a future scenario where CO2 capture and storage (CCS) is reality. In this paper three different techniques are described; chemical-looping combustion and two categories of chemical-looping reforming. The three techniques are all based on oxygen carriers that are circulating between an air- and a fuel reactor, providing the fuel with undiluted oxygen. Two different oxygen carriers; NiO/NiAl2O4 (40/60 wt/wt) and NiO/MgAl2O4 (60/40 wt/wt) are compared. Both continuous and pulse experiments were performed in a batch laboratory fluidized bed working at 950 °C using methane as fuel. It was found that pulse experiments offer advantages in comparison to continuous experiments, particularly when evaluating suitable particles for autothermal chemical-looping reforming. Firstly, smaller conversion ranges can be investigated in more detail, and secondly, the onset and extent of carbon formation can be determined more accurately. Of the two oxygen carriers, NiO/MgAl2O4 offers several advantages at elevated temperatures, i.e. higher methane conversion, higher selectivity to reforming and lesser tendency for carbon formation.  相似文献   

10.
Different Ni-based oxygen carriers were prepared by dry impregnation using γ-Al2O3 as support. The reactivity, selectivity during methane combustion, attrition rate and agglomeration behavior of the oxygen carriers were measured and analyzed in a thermogravimetric analyzer and in a batch fluidized bed during multi-cycle reduction-oxidation tests.Ni-based oxygen carriers prepared on γ-Al2O3 showed low reactivity and low methane combustion selectivity to CO2 and H2O, because most of the impregnated NiO reacted to NiAl2O4. To avoid or to minimize the interaction of NiO with alumina some modifications of the support via thermal treatment or chemical deactivation with Mg or Ca oxides were analyzed. Thermal treatment of γ-Al2O3 at 1150 °C produced the phase transformation to α-Al2O3. Ni-based oxygen carriers prepared on α-Al2O3, MgAl2O4, or CaAl2O4 as support showed very high reactivity and high methane combustion selectivity to CO2 and H2O because the interaction between the NiO and the support was decreased. In addition, these oxygen carriers had very low attrition rates and did not show any agglomeration problems during operation in fluidized beds, and so, they seem to be suitable for the chemical-looping combustion process.  相似文献   

11.
The reactivity of a Ni-based oxygen carrier prepared by hot incipient wetness impregnation (HIWI) on α-Al2O3 with a NiO content of 18 wt% was studied in this work. Pulse experiments with the reduction period divided into 4-s pulses were performed in a fluidized bed reactor at 1223 K using CH4 as fuel. The number of pulses was between 2 and 12. Information about the gaseous product distribution and secondary reactions during the reduction was obtained. In addition to the direct reaction of the combustible gas with the oxygen carrier, CH4 steam reforming also had a significant role in the process, forming H2 and CO. This reaction was catalyzed by metallic Ni in the oxygen carrier and H2 and CO acted as intermediate products of the combustion. No evidence of carbon deposition was found in any case. Redox cycles were also carried out in a thermogravimetric analyzer (TGA) with H2 as fuel. Both tests showed that there was a relation between the solid conversion reached during the reduction and the relative amount of NiO and NiAl2O4 in the oxygen carrier. When solid conversion increased, the NiO content also increased, and consequently NiAl2O4 decreased. Approximately 20% of the reduced nickel was oxidized to NiAl2O4, regardless ΔXs. NiAl2O4 was also an active compound for the combustion reaction, but with lower reactivity than NiO. Further, the consequences of these results with respect to the design of a CLC system were investigated. When formation of NiAl2O4 occurred, the average reactivity in the fuel reactor decreased. Therefore, the presence of both NiO and NiAl2O4 phases must be considered for the design of a CLC facility.  相似文献   

12.
Chemical-looping combustion (CLC) is a novel technology that can be used to meet demands on energy production without CO2 emissions. The CLC-process includes two reactors, an air and a fuel reactor. Between these two reactors oxygen is transported by an oxygen carrier, which most often is a metal oxide. This arrangement prevents mixing of N2 from the air with CO2 from the combustion. The combustion gases consist almost entirely of CO2 and H2O. Therefore, the technique reduces the energy penalty that normally arises from the separation of CO2 from other flue gases, hence, CLC may make capture of CO2 cheaper.Iron ore and oxide scale from steel production were tested as oxygen carriers in CLC batch experiments with solid fuels. Petroleum coke, charcoal, lignite and two bituminous coals were used as fuels.The experiments were carried out in a laboratory fluidized-bed reactor that was operating cyclically with alternating oxidation and reduction phases. The exhaust gases were led to an analyzer where the contents of CO2, CO, CH4 and O2 were measured. Gas samples collected in bags were used to analyze the content of hydrogen in a gas chromatograph.The results showed that both the iron ore and the oxide scale worked well as oxygen carrier and both oxygen carriers increased their reactivity with time.  相似文献   

13.
化学链燃烧铁基载氧体还原反应积炭趋势   总被引:3,自引:2,他引:1  
玄伟伟  张建胜 《化工学报》2012,63(3):904-909
利用热重分析仪对采用机械混合法自行制备的铁基载体还原过程中的积炭现象进行了实验研究。根据实验获得的热重曲线对铁基载氧体的CH4还原特性进行了分析,实验结果表明,CH4与铁基载氧体的还原反应过程中存在较为严重的积炭影响,且气体的浓度对反应有较大的影响。通过检测载氧体氧化过程中生成的CO2量对这种影响进行了定量分析,结果表明积炭随着循环次数的增多而略有下降。XRD和SEM分析结果显示还原反应生成的C部分与载体反应生成Fe3C,另一部分以碳丝的形式存在于载体表面以及颗粒之间。  相似文献   

14.
The chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU) processes are novel solutions for efficient combustion with direct separation of carbon dioxide. These processes use a metal oxide as an oxygen carrier to transfer oxygen from an air to a fuel reactor, where the fuel reacts with the solid oxygen carrier. When utilizing coal in CLC, the oxygen carrier particles could be affected through interaction with the ash-forming mineral matter found in coal, causing deactivation and/or agglomeration. In this work, possible interactions between minerals commonly encountered in coal and several promising oxygen carriers that are currently under investigation for their use in CLC are studied by both experiment and thermodynamic equilibrium calculations. Possible interaction was studied for both highly reducing and oxidizing conditions at 900 °C. Under highly reducing conditions pyrite was found to have by far the most deteriorating effect on the oxygen carrier particles, as the sulfur in the pyrite reacted with the oxygen carrier to form sulfides. Quartz and clay minerals were found to have a rather low influence on the oxygen carriers. Out of the oxygen carriers investigated, CuO/MgAl2O4 and the Mn3O4/ZrO2 oxygen carriers tended to be quite reactive towards mineral matter whereas ilmenite has been shown to be the most robust oxygen carrier. Although sulfur can clearly deactivate Ni, Cu and Mn based oxygen carriers under sub-stoichiometric conditions, when the fuel is converted fully to CO2 and H2O, sulfides are only expected for Ni-based oxygen carriers.  相似文献   

15.
A. Abad  T. Mattisson  A. Lyngfelt  M. Rydén 《Fuel》2006,85(9):1174-1185
Chemical-looping combustion (CLC) is a method for the combustion of fuel gas with inherent separation of carbon dioxide. This technique involves the use of two interconnected reactors. A solid oxygen carrier reacts with the oxygen in air in the air reactor and is then transferred to the fuel reactor, where the fuel gas is oxidized to carbon dioxide and water by the oxygen carrier. Fuel gas and air are never mixed and pure CO2 can easily be obtained from the flue gas exit. The oxygen carrier is recycled between both reactors in a regenerative process. This paper presents the results from a continuously operating laboratory CLC unit, consisting of two interconnected fluidized beds. The feasibility of the use of a manganese-based oxygen carrier supported on magnesium stabilized zirconia was tested in this work. Natural gas or syngas was used as fuel in the fuel reactor. Fuel flow and air flow was varied, the thermal power was between 100 and 300 W, and the air ratio was between 1.1 and 5.0. Tests were performed at four temperatures: 1073, 1123, 1173 and 1223 K. The prototype was successfully operated at all conditions with no signs of agglomeration or deactivation of the oxygen carrier. The same particles were used during 70 h of combustion and the mass loss was 0.038% per hour, although the main quantity was lost in the first hour of operation. In the combustion tests with natural gas, methane was detected in the exit flue gases, while CO and H2 were maintained at low concentrations. Higher temperature or lower fuel flows increases the combustion efficiency, which ranged from 0.88 to 0.99. On the other hand, the combustion of syngas was complete for all experimental conditions, with no CO or H2 present in the gas from the fuel reactor.  相似文献   

16.
In a chemical-looping combustor (CLC), gaseous fuel is oxidized by metal oxide particle, e.g. oxygen carrier, in a reduction reactor (combustor), and the greenhouse gas CO2 is separated from the exhaust gases during the combustion. In this study, NiO/bentonite particle was examined on the basis of reduction reactivity, carbon deposition during reduction, and NOx formation during oxidation. Reactivity data for NiO/bentonite particle with methane and air were presented and discussed. During the reduction period, most of the CH4 are converted to CO2 with small formation of CO. Reduction reactivity (duration of reduction) of the NiO/bentonite particle increased with temperature, but at higher temperature, it is somewhat decreased. The NiO/bentonite particle tested showed no agglomeration or breakage up to 900 ‡C, but at 1,000 ‡C, sintering took place and lumps of particles were formed. Solid carbon was deposited on the oxygen carrier during high conversion region of reduction, i.e., during the end of reduction. It was found that the appropriate temperature for the NiO/bentonite particle is 900 ‡C for carbon deposition, reaction rate, and duration of reduction. We observed experimentally that NO, NO2, and N2O gases are not generated during oxidation.  相似文献   

17.
Ni-based oxygen carriers (OC) with different NiO content were prepared by incipient wet impregnation, at ambient (AI), and hot conditions (HI) and by deposition-precipitation (DP) methods using γ-Al2O3 and α-Al2O3 as supports. The OC were characterized by BET, Hg porosimetry, mechanical strength, TPR, XRD and SEM/EDX techniques. Reactivity of the OC was measured in a thermogravimetric analyzer and methane combustion selectivity towards CO2 and H2O, attrition rate, and agglomeration behavior were analyzed in a batch fluidized bed reactor during multicycle reduction-oxidation tests.XRD and TPR analysis showed the presence of both free NiO and NiAl2O4 phases in most of the OC. The interaction of the NiO with the alumina during OC preparation formed NiAl2O4 that affected negatively to the OC reactivity and methane combustion selectivity towards CO2 and H2O during the reduction reaction. The NiO-alumina interaction was more affected by the support type than by the preparation method used. The NiO-alumina interaction was stronger in the OC prepared on γ-Al2O3.The OC were evaluated in the fluidized bed reactor with respect to the agglomeration process. OC prepared by the AI and HI methods with NiO contents up to 25 wt%, OC prepared by the DP method on γ-Al2O3 with NiO content lower than 30 wt%, and OC prepared by the DP method on α-Al2O3 with a NiO content lower than 26 wt% did not agglomerated. OC that agglomerated showed an external layer of NiO over the particles. It seems that the most important factor affecting to the formation of the external NiO layer on the OC, and so to the agglomeration process, was the metal content of the OC. The attrition rates of the OC prepared using γ-Al2O3 as support were higher than the ones prepared using α-Al2O3 as support, and in general the attrition rates of all the OC were low.The OC prepared by AI, HI or DP methods on α-Al2O3 as support had appropriated characteristics to be used in the chemical-looping combustion process.  相似文献   

18.
Chemical-looping combustion (CLC) is a combustion technique where the CO2 produced is inherently separated from the rest of the flue gases with a considerably low energy penalty. For this reason, CLC has emerged as one of the more attractive options to capture CO2 from fossil fuel combustion. When applying CLC with solid fuels, the use of a low cost oxygen carrier is highly important, and one such low cost oxygen carrier is the mineral ilmenite. The current work investigates the reactivity of several ilmenites, some which are synthetically produced by freeze granulation and two natural minerals, one Norwegian ilmenite and one South African ilmenite.  相似文献   

19.
Chemical-looping combustion (CLC) is a promising technology for the combustion of gas or solid fuel with efficient use of energy and inherent separation of CO2. A reactivity study of CaSO4 oxygen carrier in CLC of methane was conducted in a laboratory scale fixed bed reactor. The oxygen carrier particles were exposed in six cycles of alternating reduction methane and oxidation air. A majority of CH4 reacted with CaSO4 to form CO2 and H2O. The oxidation was incomplete, possibly due to the CaSO4 product layer. The reactivity of CaSO4 oxygen carrier increased for the initial cycles but slightly decreased after four cycles. The product gas yields of CO2, CH4, and CO with cycles were analyzed. Carbon deposition during the reduction period was confirmed with the combustible gas (CO+H2) in the product gas and slight CO2 formed during the early stage of oxidation. The mechanism of carbon deposition and effect was also discussed. SO2 release behavior during reduction and oxidation was investigated, and the possible formation mechanism and mitigation method was discussed. The oxygen carrier conversion after the reduction decreased gradually in the cyclic test while it could not restore its oxygen capacity after the oxidation. The mass-based reaction rates during the reduction and oxidation also demonstrated the variation of reactivity of CaSO4 oxygen carrier. XRD analysis illustrated the phase change of CaSO4 oxygen carrier. CaS was the main reduction product, while a slight amount of CaO also formed in the cyclic test. ESEM analysis demonstrated the surface change of particles during the cyclic test. The reacted particles tested in the fixed bed reactor were not uniform in porosity. EDS analysis demonstrated the transfer of oxygen from CaSO4 to fuel gas while leaving CaS as the dominant reduced product. The results show that CaSO4 oxygen carrier may be an interesting candidate for oxygen carrier in CLC. This work was presented at the 7 th China-Korea Workshop on Clean Energy Technology held at Taiyuan, China, June 26–28, 2008.  相似文献   

20.
化学链燃烧是近年来提出的一种具有高效、内分离CO2特点的新型燃烧方式。本文在立式管式炉实验装置上研究了温度对基于Fe2O3载氧体的煤化学链燃烧载氧体还原过程中汞析出特性的影响,探讨了不同燃烧温度下燃料反应器(FR)出口烟气组分的变化及其对汞迁移变化的影响。结果表明:在高温条件下(≥ 800℃),煤中的汞在载氧体还原过程中基本全部析出,180s时基本达到90%,并且随着温度升高而增加;FR出口烟气中的汞主要以单质态(Hg0)形式存在,各工况下的单质态汞占烟气中气态总汞比例都在88%以上,随着温度的升高,烟气中Hg0/HgT略有降低;温度对烟气组分具有影响,随着温度的升高,CO、NO和SO2浓度上升;对于汞而言,SO2会抑制Cl及Cl2的形成从而抑制Hg0向Hg2+转化,NO会直接或间接促进汞的氧化过程,FR烟气中以CO为主的还原性气氛不利于汞的氧化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号