首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nano-particulate high surface area CeO2 was found to have a useful methanol decomposition activity producing H2, CO, CO2, and a small amount of CH4 without the presence of steam being required under solid oxide fuel cell temperatures, 700-1000 °C. The catalyst provides high resistance toward carbon deposition even when no steam is present in the feed. It was observed that the conversion of methanol was close to 100% at 850 °C, and no carbon deposition was detected from the temperature programmed oxidation measurement.The reactivity toward methanol decomposition for CeO2 is due to the redox property of this material. During the decomposition process, the gas-solid reactions between the gaseous components, which are homogeneously generated from the methanol decomposition (i.e., CH4, CO2, CO, H2O, and H2), and the lattice oxygen on ceria surface take place. The reactions of adsorbed surface hydrocarbons with the lattice oxygen ( can produce synthesis gas (CO and H2) and also prevent the formation of carbon species from hydrocarbons decomposition reaction (CnHmnC+m/2H2). VO·· denotes an oxygen vacancy with an effective charge 2+. Moreover, the formation of carbon via Boudouard reaction (2COCO2+C) is also reduced by the gas-solid reaction of carbon monoxide with the lattice oxygen .At steady state, the rate of methanol decomposition over high surface area CeO2 was considerably higher than that over low surface area CeO2 due to the significantly higher oxygen storage capacity of high surface area CeO2, which also results in the high resistance toward carbon deposition for this material. In particular, it was observed that the methanol decomposition rate is proportional to the methanol partial pressure but independent of the steam partial pressure at 700-800 °C. The addition of hydrogen to the inlet stream was found to have a significant inhibitory effect on the rate of methanol decomposition.  相似文献   

2.
Sinking CO2 composite particles consisting of seawater, liquid CO2, and CO2 hydrate were produced by a coaxial flow injector fed with liquid CO2 and artificial seawater. The particles were injected into a high-pressure water tunnel facility to permit determination of their settling velocities and dissolution rates. Injections were performed at fixed pressures approximately equivalent to 1200-m, 1500-m, and 1800-m depths and at temperatures varying from approximately 2 to 5 °C. Immediately after injection, the cylindrical particles were observed to break away from the injector tip and often aggregated into sinking clusters. The seawater flow in the tunnel was then adjusted in a countercurrent flow mode to suspend the particles in an observation window so that images of the particles could be recorded for later analysis. The flow would often break or cause rearrangement of some of the clusters. Selected individual particles and some clusters were studied until they became too hydrodynamically unstable to follow. In general, the flow required to suspend clusters or individual particles decreased with time as the particles dissolved. For example, one particle was produced and observed for over 6 min at an average pressure of 15.022 MPa and an average temperature of 5.1 °C. Its sinking rate, determined from the flow required for stabilization, changed from 37.2 to 3.3 mm/s over this time. Particle sinking rates were compared to correlations from the literature for uniform cylindrical objects. Reasonable agreement was observed for short times; however, the observed decrease in sinking velocity with time was greater than that predicted by the correlations for longer times. Particle dissolution rates, based on changes in diameter, were also determined and varied from 5 to . A pseudo-homogeneous mass transfer model was used to predict single-particle dissolution rates. Good agreement was achieved between experimental dissolution data and the modeling results.  相似文献   

3.
Aqueous solutions of potassium glycinate were characterized for carbon dioxide absorption purposes. Density and viscosity of these solutions, with concentrations ranging from 0.1 to 3 M, were determined at temperatures from 293 to 313 K. Diffusivity of CO2 in solution was estimated applying the modified Stokes-Einstein relation. Solubilities of N2O at the same temperatures and concentrations were measured and the ion specific parameter based on Schumpe's model was determined for the glycinate anion; the solubilities of CO2 in these solutions were then computed.The reaction kinetics of CO2 in the aqueous solution of potassium glycinate was determined at 293, 298 and 303 K using a stirred cell reactor. The results were interpreted using the DeCoursey equation for the calculation of the enhancement factor. The rate of absorption as a function of the temperature and solution concentration for the conditions studied was found to be given by the following expression:
  相似文献   

4.
A modeling tool for the investigation of chemical looping combustion (CLC) in a dual circulating fluidized bed (DCFB) reactor system is introduced. CLC is a novel combustion process with inherent CO2 separation, consisting of two fluidized bed reactors, an air reactor (AR) and a fuel reactor (FR). A solid oxygen carrier (OC) that circulates between the reactors, transports the necessary oxygen for the combustion. In the DCFB concept both AR and FR are designed as circulating fluidized beds (CFBs). Each CFB is modeled using a very simple structure in which the reacting gas is only in contact with a defined fraction of the well mixed solids. The solids distribution along the height axis is defined by a void fraction profile. Different parameters that characterize the gas-solids contact are merged into only one parameter: the fraction of solids exposed to the gas passing in plug flow (φs,core). Using this model, the performance of the 120 kW DCFB chemical looping combustor at Vienna University of Technology is investigated. This pilot rig is designed for a Ni-based OC and natural gas as fuel. The influence of the reactor temperatures, solids circulation rate, air/fuel ratio and fuel power are determined. Furthermore, it is shown that with the applied kinetics data, the OC is only fully oxidized in the AR when the AR solids inventory is much larger than the FR solids inventory or when both reactors are very large. To compare different reactor systems, the effect of the solids distribution between AR and FR is studied and both gas and solids conversions are reported.  相似文献   

5.
6.
This paper describes the development of a microchannel-based Sabatier reactor for applications such as propellant production on Mars or space habitat air revitalization. Microchannel designs offer advantages for a compact reactor with excellent thermal control. This paper discusses the development of a Ru-TiO2-based catalyst using powdered form and its application and testing in a microchannel reactor. The resultant catalyst and microchannel reactor demonstrates good conversion, selectivity, and longevity in a compact device. A chemically reacting flow model is used to assist experimental interpretation and to suggest microchannel design approaches. A kinetic rate expression for the global Sabatier reaction is developed and validated using computational models to interpret packed-bed experiments with catalysts in powder form. The resulting global reaction is then incorporated into a reactive plug-flow model that represents a microchannel reactor.  相似文献   

7.
The oxidative absorption of hydrogen sulfide (H2S) into a solution of ferric chelate of trans-1,2- diaminocyclohexanetetraacetate (CDTA) was studied in a counter-current laboratory column randomly packed with 15 mm plastic Ralu rings. The present investigation takes concern about the Kraft pulping situation where dilute H2S concentrations are omnipresent in large-volume gas effluents. A fractional two-level factorial approach was instigated to determine the significance of six operating variables, namely the solution's alkalinity (pH; 8.5-10.5), the liquid mass flow rate (L;1.73-), the solution's ionic strength (IC;0.01-), the gas mass flow rate (G;0.19-), the inlet H2S concentration (CH2S,0;70-430 ppm) and the initial ferric CDTA concentration (CFe,0;100 -). Initially, a Plackett-Burman design matrix of seven duplicated experiments revealed that pH is the leading factor controlling the H2S conversion rate while the ionic strength and ferric CDTA concentration effects remained negligible within the factorial domain. Surface response analysis based on 11 duplicated factorial experiments plus 10 central composite trials revealed that the H2S conversion significantly increases with liquid flow rate but decreases with growing H2S load up. Further examination about the influence of ferric CDTA on H2S absorption rate was set up over a broader concentration range (CFe,0;0- at pH of 9.5 and 10.5. It showed good potential at as H2S conversion increased by a significant 25% for both pH values in comparison to pure alkaline solutions containing no ferric CDTA.  相似文献   

8.
This work was aimed at modeling hydrodynamic characteristics of fluidization in conical beds using quartz sand as the inert bed material and air as the fluidizing agent. The minimum fluidization velocity, umf, and the minimum velocity of full fluidization, umff, were determined by Peng and Fan's models modified for conical fluidized bed. Meanwhile, the pressure drop across a bed, Δp (including Δpmax and Δpmff corresponding to umf and umff, respectively), was predicted by using modified Ergun's equations for variable superficial air velocity at an air distributor, u0. The predicted results were validated by experimental data for some operating conditions. Effects of the sand particle size, cone angle and static bed height on the fluidization pattern and hydrodynamic characteristics are discussed. With the proposed models, the Δp-u0 diagram were obtained with rather high accuracy for the conical air-sand beds of 30-45° cone angles and 20-30 cm static bed heights, when using 300- sand particles. For the predicted umf and umff, the relative computational errors were found to be within 20% for wide ranges of operating variables, whereas Δpmax and Δpmff could be predicted with lower (10-15%) relative errors. With higher cone angles and/or bed heights, the computational accuracy was found to deteriorate.  相似文献   

9.
The kinetics absorption of CO2 into aqueous blends of 2-(1-piperazinyl)-ethylamine (PZEA) and N-methyldiethanolamine (MDEA) were studied at 303, 313, and 323 K using a wetted wall column absorber. The PZEA concentrations in the blends with MDEA varied from 0 to to see the effect of PZEA as an activator in the blends with two different total amine concentrations (1.0 and ). Based on the pseudo-first-order condition for the CO2 absorption, the overall second-order reaction rate constants were determined from the kinetic measurements. The kinetic rate parameters were calculated and presented at each experimental condition.  相似文献   

10.
This work presents an investigation of CO2 absorption into aqueous blends of 2-amino-2-methyl-1-propanol (AMP) and monoethanolamine (MEA). The acid gas mass transfer has been modeled using equilibrium-mass transfer-kinetics-based combined model to describe CO2 absorption into the amine blends according to Higbie's penetration theory. The effect of contact time and relative amine concentration on the rate of absorption and enhancement factor were studied by absorption experiment in a wetted wall column at atmospheric pressure. The model was used to estimate the rate coefficient of the reaction between CO2 and monoethanolamine at 313 K from experimentally measured absorption rates. A rigorous parametric sensitivity test has been done to identify the key systems’ parameters and quantify their effects on the mass transfer using the mathematical model developed in this work. The model predictions have been found to be in good agreement with the experimental rates of absorption of CO2 into (AMP+MEA+H2O).  相似文献   

11.
Conductivity measurements in PEO30MI polymer electrolytes with M=Li, Na, K, Rb, or Cs over the temperature range from about 65 to 200 °C show an increasing tendency for salt precipitation with increasing cation size. The salt precipitation in these complexes upon heating is revealed by the decrease of the dc conductivity starting at a critical temperature Tc. Whereas LiI and NaI complexes do not show precipitation effects, Tc monotonically decreases from about 140 to 65 °C when changing the salt component from KI via RbI to CsI. For the PEO-RbI system, precipitation is further investigated by nuclear magnetic resonance (NMR) and tracer diffusion experiments. NMR analysis unambiguously demonstrates the onset of RbI salt precipitation and the increase of the precipitate fraction with increasing temperature. In diffusion experiments on PEO30RbI with the radiotracers and , the precipitation effect is manifested by anomalous features in the penetration profiles, however, without noticeable changes in their depth range. Combining the resulting tracer diffusion coefficients with the dc conductivity data enables us to assess crucial parameters characterizing ionic transport in PEO30RbI.  相似文献   

12.
Methane decomposition was carried out in the presence of CO2 over the nickel catalysts. Spherical alumina and glycothermally synthesized zirconia were used as the catalyst supports. In the presence of CO2, CH4 was decomposed in the same fashion as pure methane decomposition, and fibrous carbons were formed. However, the formation of hydrogen, carbon monoxide, and water continued even after the apparent carbon formation ceased, and this phenomenon was observed irrespective of the support materials. These results showed a sharp contrast against the results for the pure methane decomposition where the catalyst was completely deactivated when the carbon formation ceased. Further carbon formation was observed when the feed gas containing CO2 was replaced with pure CH4. Mechanisms for these phenomena are discussed from the thermodynamical point of view.  相似文献   

13.
Numerical simulation has been used to show the feasibility of the autothermal cogeneration of synthesis gas and electricity in a solid oxide fuel cell (SOFC) by the electrochemical partial oxidation of CH4. Owing to the large positive entropy change of the CH4 partial oxidation reaction and its low heating value, severe cooling effect is being induced in the SOFC due to heat absorbance by the reaction products. For this reason the autothermal operation of the SOFC reactor cannot be secured. As it is shown this can be overcome by combining the dynamic operation of the SOFC under forced periodic reversal of the flow and the bleeding of a small amount of CH4(<2.5%) in the oxidant stream (cathode). In this respect the catalytic combustion of CH4, on the perovskite cathodic electrode, provides the necessary energy demand so that in combination with flow reversal operation the SOFC is maintained ignited even at inlet temperature as low as 300 K. It is shown that the overall thermodynamic efficiency of the process can by far exceed unity (η>2), thus revealing the unique property of the SOFCs to produce high-quality energy and useful chemicals.  相似文献   

14.
The mass transfer performance of a gas-liquid self-ingesting stirred reactor is reported both for coalescing and non-coalescing systems. The vessel features are a high aspect ratio and a rather narrow multiple-impeller draft tube, through which the gas phase is ingested and led down to the vessel bottom, where it is finely dispersed into the liquid rising in the annular portion of the vessel. Comparison is made between kLa values determined by several variants of the dynamic method, among which pure oxygen absorption in a previously de-gassed liquid phase. Results show that the gas-liquid mass transfer coefficient values obtained with the last approach are remarkably larger than those measured with all other techniques in which nitrogen is initially dissolved in the liquid phase. Possible reasons behind this discrepancy are discussed.The gas-liquid mass transfer performance of the investigated gas inducing contactor is finally compared with literature data on other self-inducing/ingesting devices. Comparison results encourage further development of the investigated apparatus.  相似文献   

15.
Analysis of cake filtration was made by the numerical solution of the appropriate equations of change based on the multiphase flow theory with the assumption that the cake properties are functions of the particle phase compressive stress, ps. Unlike earlier studies which assume the relationship between ps and the pressure of the fluid phase, pl, to be ps+pl=0, other possibilities were also considered in view of the recent work of Tien et al. (Chem. Eng. Sci. 56 (2001) 5361).In addition to investigating the effect of the ps-pl relationship, comparisons of predicted filtration performance with experiments made it possible to substantiate earlier findings that the ps-pl relationship is system specific. The results of the analysis were also used to test the parameter sensitivity of predictions, namely, values of the parameters of the constitutive relationships (i.e. ?s vs. ps and α vs. ps, where ?s and α are the cake solidosity and specific cake resistance). This information, in turn, can be used as a bench mark for improving existing and developing new procedures for determining cake solidosity and permeability.  相似文献   

16.
The milling behaviour of microcrystalline cellulose (MCC) and α-lactose monohydrate (αLM) in an oscillatory single ball mill has been analysed by using the Distinct Element Method (DEM). The experimental results suggest that the milling behaviour of αLM is more strongly influenced by the milling frequency as compared to MCC. A similar conclusion is also drawn from the DEM results. The milling behaviour of MCC and αLM is described by a first order rate process, and its rate constant, Kp, is found to correlate very well with the milling power, Pn, determined by the DEM simulation, except for the milling behaviour of αLM at 18 Hz. For the latter, there appears to be an incubation time after which the milling rate increases substantially. The results presented here provide a basis for predicting the milling behaviour of a material systematically based on the fundamental material properties and the machine dynamics without the need for extensive experiment and use of large quantities of materials.  相似文献   

17.
The intrinsic rate constants of the CaO-CO2 reaction, in the presence of syngas, were studied using a grain model for a naturally occurring calcium oxide-based sorbent using a thermogravimetric analyzer. Over temperatures ranging from 580 to 700 °C, it was observed that the presence of CO and H2 (with steam) during carbonation caused a significant increase in the initial rate of carbonation, which has been attributed to the CaO surface sites catalyzing the water-gas shift reaction, increasing the local CO2 concentration. The water-gas shift reaction was assumed to be responsible for the increase in activation energy from 29.7 to 60.3 kJ/mol for limestone based on the formation of intermediate complexes. Changes in microporosity due to particle sintering during calcination have been credited with the rapid initial decrease in cyclic CaO maximum conversion for limestone particles, whereas the presence of steam during carbonation has been shown to improve the long-term maximum conversion in comparison to previous studies without steam present.  相似文献   

18.
A novel biphasic process concept for the synthesis of propylene oxide (PO) from propylene is presented, using the long known catalyst, methyl trioxorhenium and aqueous hydrogen peroxide as the oxidant. Propylene is fed as gas, which is transported to the liquid phase containing the oxidant, catalyst and methanol as a cosolvent that improves propylene solubility. The selective oxidation produces PO which is distilled easily from the liquid phase taking advantage of the relatively low normal boiling point of PO compared to those of methanol and water. The process satisfies the sustainability principles of waste minimization, use of benign reagents and process intensification at mild conditions. The process produces PO in yields exceeding 98%. It operates at essentially ambient temperature and moderate pressures , using easily recyclable, low hazard aqueous methanol, as solvent. The catalyst, methyl trioxorhenium, is robust under the operating conditions. A key aspect of the innovation is the use of nitrogen gas pressure to enhance propylene availability in the liquid phase increasing its conversion from ∼80% (without N2) to complete (with N2) in a few hours. These findings pave the way for catalyst durability and recycle studies, aimed at demonstrating a continuous process that is economically and environmentally sustainable compared to existing processes.  相似文献   

19.
Successive calcination-carbonation cycles, using CaO as sorbent, have been performed either in a classical fixed bed reactor or using a thermogravimetric analyser. Significant differences in carbonation efficiencies were obtained, possibly due to different conditions prevailing for CaO sintering during the calcination stage. The effect of the presence of CO2 on sintering was confirmed.A simple model of the decay of the carbonation capacity along cycles based on the specific surface area of non-sintered micrograins of CaO is able to predict the decrease of the extent of conversion obtained after 40 carbonations along calcination-carbonation cycles. The asymptotic extent of conversion is obtained when all the micrograins present within a grain are sintered. A detailed model of the carbonation shows that the voids present between the micrograins are filled up by carbonate when a critical thickness of the carbonate layer around each micrograin reaches 43 nm. Then, carbonation becomes controlled by diffusion at the scale of the whole grain, with the CO2 diffusion coefficient decreasing (at ) from 2×10-12 to as carbonation proceeds from 50% conversion to 76% (first cycle). This scale change for diffusion is responsible for the drastic decrease of the carbonation rate after the voids between micrograins are filled up.  相似文献   

20.
In order to elucidate the dynamic performance of the CO2 ocean disposal process, effects of operating parameters, such as gas flow rate, salinity and temperature, on the absorption of CO2 into seawater were examined. The rate-based model consisting of the rates of chemical reaction and gas-liquid mass transfer was developed for simulating dynamic process of CO2 ocean disposal. In modeling, non-ideal mixing characteristics in the gas and liquid phases are described using a tanks-in-series model with backflow. Experiments were performed to verify dynamic CO2 absorption prediction capability of the proposed model in a cylindrical bubble column. The operation was batch and continuous with respect to liquid phase and gas phase, respectively. Experimental results indicate that the CO2 gas injection rate increased the absorption rate but the increase in salinity concentration caused inhibition of the absorption of CO2. The proposed model could describe the present experimental results for the dynamic changes and the steady-state values of dissolved CO2 concentration and hydrogen ion concentration. The proposed model might effectively handle the prediction of the absorption of CO2 into seawater in the CO2 ocean disposal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号