首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In this work new experimental data on the rate of absorption of CO2 into piperazine (PZ) activated concentrated aqueous solutions of 2-amino-2-methyl-1-propanol (AMP) over the temperature range 303–323 K are presented. The absorption experiments have been carried out in a wetted wall contactor over CO2 partial pressure range of 5–15 kPa. PZ is used as a rate activator with a concentration ranging from 2 to 8 wt% keeping the total amine concentration in the solution at 40 wt%. The physical properties such as density and viscosity of concentrated aqueous AMP+PZ, as well as physical solubility of CO2 in concentrated aqueous AMP+PZ, are also measured. New experimental data on vapor liquid equilibrium (VLE) of CO2 in these concentrated aqueous solutions of AMP+PZ in the temperature range of 303–323 K have also been presented. The VLE measurements are carried out in an equilibrium cell in CO2 pressure range of 0.1–140 kPa. A thermodynamic model based on electrolyte non-random two-liquid (eNRTL) theory is used to represent the VLE of CO2 in aqueous AMP+PZ. Liquid phase speciations are estimated considering the nonideality of concentrated solutions of the amines and the calculated activity coefficients by eNRTL model. The CO2 absorption in the aqueous amine solutions is described by a combined mass transfer-reaction kinetics model developed according to Higbie's penetration theory. The model predictions have been found to be in good agreement with the experimental results of the rates of absorptions of CO2 into aqueous AMP+PZ.  相似文献   

2.
This paper tests the performance of microporous polyvinylidinefluoride (PVDF) hollow fiber in a gas absorption membrane process (GAM) using the aqueous solutions of piperazine (PZ) and 2-amino-2-methyl-1-propanol (AMP). Experiments were conducted at various gas flow rates, liquid flow rates and absorbent concentrations. Experimental results showed that wetting ratio was about 0.036% when used with the aqueous alkanolamine solutions, while that was 0.39% with aqueous piperazine solutions. The CO2 absorption rates increased with increasing both liquid and gas flow rates at NRe < 20. The increase of the PZ concentration showed an increase of absorption rate of CO2. The CO2 absorption rate was much enhanced by the addition of PZ promoter. The resistance of membrane was predominated as using a low reactivity absorbent and can be neglected as using absorbent of AMP aqueous solution. The resistance of gas-film diffusion was dominated as using the mixed absorbents of AMP and PZ. An increase of PZ concentration, the resistance of liquid-film diffusion decreased but resistance of gas-film increased. Overall, GAM systems were shown to be an effective technology for absorbing CO2 from simulated flue gas streams, but the viscosity and solvent-membrane relationship were critical factors that can significantly affect system performance.  相似文献   

3.
In this work, new experimental data on the rate of absorption of CO2 into piperazine (PZ) activated aqueous solutions of 2-amino-2-methyl-1-propanol (AMP) are reported. The absorption experiments using a wetted wall contactor have been carried out over the temperature range of 298-313 K and CO2 partial pressure range of 2-14 kPa. PZ is used as a rate activator with a concentration ranging from 2 to 8 wt%, keeping the total amine concentration in the solution at 30 wt%. The CO2 absorption into the aqueous amine solutions is described by a combined mass transfer-reaction kinetics-equilibrium model, developed according to Higbie's penetration theory. Parametric sensitivity analysis is done to determine the effects of possible errors in the model parameters on the accuracy of the calculated CO2 absorption rates from the model. The model predictions have been found to be in good agreement with the experimental results of rates of absorption of CO2 into aqueous (PZ+AMP). The good agreement between the model predicted rates and enhancement factors and the experimental results indicates that the combined mass transfer-reaction kinetics-equilibrium model with the appropriate use of model parameters can effectively represent CO2 mass transfer in PZ activated aqueous AMP solutions.  相似文献   

4.
In this work, experimental data and a simplified vapor–liquid equilibrium (VLE) model for the absorption of CO2 into aqueous solutions of piperazine (PZ) activated 2-amino-2-methyl-1-propanol (AMP) are reported. The purpose of the work was to find the AMP/PZ system with the highest concentration and cyclic capacity, which could be used in the industry without forming solid precipitations at operational temperatures. The effect of the AMP/PZ ratio and the total concentration level of amine was studied. The highest possible ratio of AMP/PZ, which does not form solid precipitates during the absorption of CO2 at 40 °C (40 wt% amine), was identified. Considering the maximum loading found in the screening tests for AMP/PZ (3+1.5 M) and for 30 wt% MEA systems, the AMP/PZ system has about 128% higher specific cyclic capacity if operating between 40 and 80 °C, and almost twice the CO2 partial pressure at 120 °C compared to MEA.  相似文献   

5.
In this work, the kinetics of the reaction between CO2 and piperazine-activated aqueous solutions of a sterically hindered alkanolamine, 2-amino-2-hydroxymethyl-1,3-propanediol (AHPD) was studied in a wetted wall column contactor at 303.15, 313.15 and 323.15 K. The AHPD concentration in the aqueous solutions was kept at while the piperazine (PZ) concentration varied in the range . Under pseudo-first-order CO2 absorption conditions, the overall pseudo-first-order rate constants were determined and reaction rate parameters were calculated with a non-linear regression from the overall reaction rate constant. The ratio of the diffusivity and Henry's law constant for CO2 in solutions was estimated by applying the N2O analogy and the Higbie penetration theory, using the physical absorption data of CO2 and N2O in water and of N2O in amine solutions. Piperazine was found to be an effective activator in the aqueous AHPD solutions, as the addition of small amounts of PZ to these solutions has a significant effect on the enhancement of the CO2 absorption rate for all studied temperatures.  相似文献   

6.
D. Fu  F. Liu  Z. Li 《化学工程与技术》2013,36(11):1859-1864
Surface tensions of carbonated 2‐amino‐2‐methyl‐1‐propanol (AMP) and piperazine (PZ) aqueous solutions were measured by a surface tension meter which employs the Wilhemy plate principle. A thermodynamic model was proposed to correlate the surface tensions of both CO2‐unloaded and CO2‐loaded aqueous solutions by introducing the contribution of CO2 loading into the formulation of surface tension. Based on experiments and calculations, the effects of temperature, mass fractions of amines, and CO2 loading on surface tensions of carbonated aqueous solutions were demonstrated.  相似文献   

7.
To understand the behavior of separation of CO2 from CO2-N2 mixtures using a hydrophobic microporous hollow fiber (polytetrafluoroethylene) contained gas-liquid contactor with aqueous solutions of 2-amino-2-methyl-l-propanol (AMP) as liquid media in the shell side, first, the absorption of dilute CO2 into aqueous AMP solutions and the desorption of CO2 from CO2-loaded AMP solutions into N2 stream were investigated separately for various combinations of operational variables. Secondly, the simultaneous absorption and desorption in a single unit was performed to check the possibility of a long-term continuous operation. The resistance to diffusion in the hollow fiber phase during absorption amounted to ca. 86% of the total resistance, and slightly decreased with increasing AMP concentration. The AMP solution partially leaks into pores of the hollow fiber, and both the diffusion and chemical reaction of dissolved CO2 in the liquid-filled pores under the slow-reaction regime mainly control the overall absorption rate. If the physical diffusion in the liquid-filled part of the pore completely controlled the absorption process in the present hollow fiber contactor, the length of the liquid-filled part would be evaluated to be 72 ~ 108 urn as compared to the total pore length of 500 um. The desorption rate was found to be independent of the gas velocity in the lumen side. The desorption process can be regarded as being controlled by diffusion and chemical reaction in both the stagnant film of the liquid phase and the liquid-filled pore of the hollow fiber phase under the slow or intermediate reaction regime. Simultaneous absorption and desorption process in a single contactor was found to be kept in a stable state at least until 20?h.  相似文献   

8.
The chemical capture of CO2 by either aqueous Na2CO3 and K2CO3 or nonaqueous solutions of the amines 2‐amino‐2‐methyl‐1‐propanol (AMP) or piperazine (PZ) is described. The captured CO2 is stored as solid NaHCO3, KHCO3, and AMP or PZ carbamates. Solid NaHCO3 and KHCO3 are decomposed at 200 °C and 250 °C, respectively, to regenerate the carbonates for their reuse. In the experiments with AMP or PZ, the solid carbamates are decomposed at 80 °C–110 °C to regenerate the free amines. The absence of water in the desorption‐regeneration step is intriguing and could have the potential of reducing one of the major disadvantages of aqueous absorbents, namely the energy cost of the regeneration step and amine degradation, yet preserving the efficiency of the absorption in the liquid phase.  相似文献   

9.
The kinetics for the reactions of carbon dioxide with 2‐amine‐2‐methyl‐1‐propanol (AMP) and carbon dioxide (CO2) in both aqueous and nonaqueous solutions were measured using a microfluidic method at a temperature range of 298–318 K. The mixtures of AMP‐water and AMP‐ethylene glycol were applied for the working systems. Gas‐liquid bubbly microflows were formed through a microsieve device and used to determine the reaction characteristics by online observation of the volume change of microbubbles at the initial flow stage. In this condition, a mathematical model according to zwitterion mechanism has been developed to predict the reaction kinetics. The predicted kinetics of CO2 absorption in the AMP aqueous solution verified the reliability of the method by comparing with literatures’ results. Furthermore, the reaction rate parameters for the reaction of CO2 with AMP in both solutions were determined. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4358–4366, 2015  相似文献   

10.
This work presents an experimental and theoretical investigation of the simultaneous absorption of CO2 and H2S into aqueous blends of 2-amino-2-methyl-1-propanol (AMP) and diethanolamine (DEA). The effect of contact time, temperature and amine concentration on the rate of absorption and the selectivity were studied by absorption experiments in a wetted wall column at atmospheric pressure and constant feed gas ratio. The diffusion-reaction processes for CO2 and H2S mass transfer in blended amines are modeled according to Higbie's penetration theory with the assumption that all reactions are reversible. The blended amine solvent (AMP+DEA+H2O) has been found to be an efficient mixed solvent for simultaneous absorption of CO2 and H2S. By varying the relative amounts of AMP and DEA the blended amine solvent can be used as an H2S-selective solvent or an efficient solvent for total removal of CO2 and H2S from the gas streams. Predicted results, based on the kinetics-equilibrium-mass transfer coupled model developed in this work, are found to be in good agreement with the experimental results of rates of absorption of CO2 and H2S into (AMP+DEA+H2O) of this work.  相似文献   

11.
The reaction kinetics and molecular mechanisms of CO2 absorption using nonaqueous and aqueous monoethanolamine (MEA)/methyldiethanolamine (MDEA)/2-amino-2-methy-1-propanol (AMP) solutions were analyzed by the stopped-flow technique and ab initio molecular dynamics (AIMD) simulations. Pseudo first-order rate constants (k0) of reactions between CO2 and amines were measured. A kinetic model was proposed to correlate the k0 to the amine concentration, and was proved to perform well for predicting the relationship between k0 and the amine concentration. The experimental results showed that AMP/MDEA only took part in the deprotonation of MEA-zwitterion in nonaqueous MEA + AMP/MEA + MDEA solutions. In aqueous solutions, AMP can also react with CO2 through base-catalyzed hydration mechanism beside the zwitterion mechanism. Molecular mechanisms of CO2 absorption were also explored by AIMD simulations coupled with metadynamics sampling. The predicted free-energy barriers of key elementary reactions verified the kinetic model and demonstrated the different molecular mechanisms for the reaction between CO2 and AMP.  相似文献   

12.
Measurements of kinetics rates of CO2 in aqueous solutions of methyldiethanolamine (MDEA), piperazine (PZ), and mixtures of (MDEA + PZ), (PZ + sulfolane) and (MDEA + sulfolane) were carried out using the stopped flow technique, and reported in terms of pseudo-first-order rate constants (k0). When possible, the second-order reaction rate constants (k2) were regressed from the data. Experiments were performed over new concentration ranges of (10–60), (200–800), (200–800, 10–40), (10–40, 10–200), and (200–800, 10–200) mol/m3 for the above-mentioned five systems, respectively, and at temperatures varying from (298.15–313.15 K). When sulfolane was added to the amine solution, pseudo-first-order rate constants in the mixed solvents were higher than in aqueous MDEA and PZ solutions at all temperatures. The kinetic rates were highest at 298.15 K and decreased at higher temperatures for aqueous (MDEA + sulfolane) solutions but increased with temperature for aqueous (PZ + sulfolane) systems. Reaction orders for both PZ and MDEA were practically one at all sulfolane concentrations and temperatures. The base catalysis mechanism was used to regress very well data for aqueous MDEA and (MDEA + sulfolane + water) and the termolecular mechanism was used for (PZ + sulfolane + water) system. Both the zwitterion and termolecular models were able to fit the experimental data for the aqueous PZ system well. Finally, the termolecular and a hybrid model based on the combination of the Zwitterion and base catalysis mechanisms were able to successfully correlate the experimental data for the mixed aqueous (MDEA + PZ) systems.  相似文献   

13.
In Part 1 of this paper, detailed design of the hemispherical apparatus and a rigorous mathematical model applied to CO2 absorption and desorption in and from aqueous alkanolamine solutions was presented with some preliminary results. This part of the paper provides detailed results on CO2-amine kinetics under absorption and desorption conditions and present new estimates of the kinetic parameter for aqueous solutions of monoethanolamine (MEA), diethanolamine (DEA), methyl-diethanolamine (MDEA) and 2-amino-2-methyl-1-propanol (AMP). The absorption experiments were conducted at near atmospheric pressure with pure humidified CO2 at 293-323 K using initially unloaded solutions. The desorption experiments were performed at 333-383 K for CO2 loadings between 0.02 to 0.7 mol of CO2 per mole of amine using humidified nitrogen gas as a stripping medium at total system pressure ranging from 110 to 205 kPa.The new rigorous mathematical model discussed in Part 1 was used in conjunction with a non-linear regression technique to estimate the kinetic parameters. In all cases, the new model predicts the experimental results well. Also, the new results clearly demonstrate that the theory of absorption with reversible chemical reaction could be used to predict desorption rates. The zwitterion mechanism adequately describes the reactions between CO2 and carbamate forming amines such as MEA, DEA and AMP. The reactions between CO2 and aqueous MDEA solutions are best described by a base-catalyzed hydration reaction mechanism. The kinetic data obtained show that desorption experiments could be used to determine both forward and backward rate constants accurately. The absorption experiments, on the other hand, could only be used to determine forward rate constants. It was found that at all operating conditions used in this study, the kinetic parameters for MEA, DEA and AMP obtained using absorption data could not be extrapolated to predict desorption rates. However, for MDEA, these data could be used successfully to obtain reasonably good predictions of desorption rates.  相似文献   

14.
In this study, new equilibrium solubility data for carbon dioxide in aqueous solutions of 2-amino-2-methyl-1-propanol and piperazine (PZ) are provided. The two famous Deshmukh–Mather and Kent Eisenberg thermodynamic models are utilized to predict the CO2 absorption. The experimental data show that the solubility of CO2 decreases as the temperature increases. Our data suggest that the addition of PZ has different effects on CO2 absorption under different partial pressure of the CO2 in the gas stream. For high partial pressure, the addition of PZ promotes the absorption performance. However, at low CO2 partial pressure, PZ addition results in less saturated CO2 loading. The Deshmukh–Mather model can provide an accurate prediction of the experimental data at high partial pressure of CO2 (i.e. AAD = 3.4%) whereas the modified Kent–Eisenberg model can capture the inverse effects of the PZ at low partial pressure and provides a relatively good approximation of experimental data at low partial pressure (i.e. AAD = 10%).  相似文献   

15.
The absorption of dilute CO2 into aqueous solutions of sterically hindered 2-methyl aminoethanol (MAE) and the desorption of CO2 from CO2-loaded MAE solutions into N2 stream were investigated separately for the various combinations of operational variables, using a hydrophobic microporous hollow fiber (polytetrafluoroethylene, PTFE) contained gas-liquid contactor with aqueous solutions of MAE as liquid media in the shell side at 30°C. The absorption of CO2 in this contactor is governed by resistance in the liquid and hollow fiber phases. The resistance to diffusion in the hollow fiber phase amounts to 76–80% of the total resistance. Nevertheless, the absorption rates of CO2 into aqueous MAE solutions in this contactor are higher than those into aqueous solutions of sterically hindered 2-amino-2-methyl-1-propanol (AMP) in the stirred tank with a plane unbroken gas-liquid interface. The process of desorption of CO2 from CO2-loaded MAE solutions can be regarded as being controlled by diffusion and chemical reaction in both the stagnant film of the liquid phase and the liquid-filled pore of the hollow fiber phase under the slow or intermediate reaction regime. Both absorption and desorption rates under the simultaneous absorption-desorption operation in a single unit tend to approach the respective constant values as process time elapses. The total absorption rate here seems to be almost balanced with the total desorpion rate at the constant mass transfer rate periods.  相似文献   

16.
This work presents an experimental and theoretical investigation of CO2 absorption into aqueous blends of 2-amino-2-methyl-1-propanol (AMP) and diethanolamine (DEA). The CO2 absorption into the amine blends is described by a combined mass transfer-reaction kinetics-equilibrium model, developed according to Higbie's penetration theory. The model predictions have been found to be in good agreement with the experimental rates of absorption of CO2 into (AMP+DEA+H2O). The good agreement between the model predicted rates and enhancement factors and the experimental results indicate that the combined mass transfer-reaction kinetics-equilibrium model with the appropriate use of model parameters can effectively represent CO2 mass transfer for the aqueous amine blends AMP/DEA.  相似文献   

17.
In this work the kinetics of the reaction between CO2 and a sterically hindered alkanolamine, 2-amino-2-hydroxymethyl-1,3-propanediol (AHPD) were determined at temperatures of 303.15, 313.15 and 323.15 K in a wetted wall column contactor. The AHPD concentration in the aqueous solutions was varied in the range 0.5-2.4 kmol m−3. The ratio of the diffusivity and Henry's law constant for CO2 in solutions was estimated by applying the N2O analogy and the Higbie penetration theory, using the physical absorption data of CO2 and N2O in water and of N2O in amine solutions. Based on the pseudo-first-order for the absorption of CO2, the overall pseudo-first-order rate constants were determined from the kinetics measurements. By considering the zwitterion mechanism for the reaction of CO2 with AHPD, the zwitterion deprotonation and second-order rate constants were calculated. The second-order rate constant, k2, was found to be 285, 524, and 1067 m3 kmol−1 s−1 at 303.15, 313.15, and 323.15 K, respectively.  相似文献   

18.
This work presents an investigation of CO2 absorption into aqueous blends of 2-amino-2-methyl-1-propanol (AMP) and monoethanolamine (MEA). The acid gas mass transfer has been modeled using equilibrium-mass transfer-kinetics-based combined model to describe CO2 absorption into the amine blends according to Higbie's penetration theory. The effect of contact time and relative amine concentration on the rate of absorption and enhancement factor were studied by absorption experiment in a wetted wall column at atmospheric pressure. The model was used to estimate the rate coefficient of the reaction between CO2 and monoethanolamine at 313 K from experimentally measured absorption rates. A rigorous parametric sensitivity test has been done to identify the key systems’ parameters and quantify their effects on the mass transfer using the mathematical model developed in this work. The model predictions have been found to be in good agreement with the experimental rates of absorption of CO2 into (AMP+MEA+H2O).  相似文献   

19.
In this work, the kinetics of the reaction between CO2 and aqueous piperazine (PZ) have been estimated over the temperature range of 298-313 K from the absorption data obtained in a wetted wall contactor. The absorption data are obtained for the PZ concentrations of 0.2- and for CO2 partial pressures up to 5 kPa. A coupled mass transfer-kinetics-equilibrium mathematical model based on Higbie's penetration theory has been developed with the assumption that all reactions are reversible. The model is used to estimate the rate constants from the experimental data for absorption of CO2 in aqueous PZ. The estimated rate constants of this study are in good agreement with those reported in the literature.  相似文献   

20.
To enhance the absorption rate for CO2 and SO2, aqueous ammonia (NH3) solution was added to an aqueous 2-amino-2-methyl-1-propanol (AMP) solution. The simultaneous absorption rates of AMP and a blend of AMP+ NH3 for CO2 and SO2 were measured by using a stirred-cell reactor at 303 K. The process operating parameters of interest in this study were the solvent and concentration, and the partial pressures of CO2 and SO2. As a result, the addition of NH3 solution into aqueous AMP solution increased the reaction rate constants of CO2 and SO2 by 144 and 109%, respectively, compared to that of AMP solution alone. The simultaneous absorption rate of CO2/SO2 on the addition of 1 wt% NH3 into 10 wt% AMP at a p A1 of 15 kPa and p A2 of 1 kPa was 5.50×10−6 kmol m−2 s−1, with an increase of 15.5% compared to 10 wt% AMP alone. Consequently, the addition of NH3 solution into an aqueous AMP solution would be expected to be an excellent absorbent for the simultaneous removal of CO2/SO2 from the composition of flue gas emitted from thermoelectric power plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号