首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Total and sectional gas-phase holdups are measured in a wide (0.305 m internal diameter) and long (3.7 m) glass bubble column al ambient conditions as a function of superficial gas velocity. Sectional gas holdup values vary along the length of the column and decrease as the height above the gas distributor plate increases in the transitional and turbulent flow regimes. In the discrete bubbling regime, the values are fairly constant in most of the column length except for a small lower portion where the values are significantly smaller than in the rest of the column. This is due to the formation of gas jets at the orifices of the distributor plate. The holdup values are dependent only on the mangitude of gas velocity and do not depend upon how it is approached, i.e., by increasing or decreasing the flow, in the turbulent-flow regime. This is not the case in the discrete and transitional gas-flow regimes. These characteristic variations in gas holdup are explained on the basis of the formation of bubbles in the lower region of the column and their growth by bubble coalescence prior to acquiring a stable bubble size.

Limited experimental data for the three-phase system (air-water-glass beads) indicate that gas holdup decreases as the concentration of glass beads is increased in the mixutre. This is attributed to the increased buoyancy effect in the presence of glass beads which increases the upthrust and hence the bubble velocity which results in the decrease of gas holdup. Total gas holdup data as a function of superficial gas velocity are compared with the predictions of four commonly used correlations and are also analysed in terms of the sectional measured gas-phase holdup data. The inferences that follow are significant.  相似文献   

2.
The bubble characteristics have been investigated in an air–water bubble column with shallow bed heights. The effect of bed height, location and the presence of solids on the bubble size, bubble rise velocity and overall and sectional gas holdup are studied over a range of superficial gas velocities. Optimal shallow bed operation relies on the combined entrance and exit effects at the distributor and the liquid bed surface. The gas holdup is found to decrease with an increase in H/D ratio but the effect is diminishing at high H/D ratios. A H/D ratio of 2–4 is found to be suitable for shallow bed operation. The presence of solids causes the formation of larger bubbles at the distributor and the effect is diminishing as the gas velocity is increased.  相似文献   

3.
The hydrodynamic behavior of an external loop airlift slurry reactor (ALSR) with and without a resistance-regulating element was studied with a fiber optic probe and ultrasound Doppler velocimetry. The influences of the superficial gas velocity and solid holdup on the global gas holdup and radial profiles of the suspension circulation velocity in the downer and of gas holdup, bubble size, and bubble rise velocity in the riser were studied. Local measurements allow a better understanding of the flow behavior in the reactor and can be used for CFD modeling and validation. Experimental results show that the resistance-regulating element increases the gas holdup and decreases the suspension circulation velocity, indicating that an optimum design of the flow resistance is needed to obtain the maximum gas-liquid volumetric mass transfer coefficient for a specific superficial gas velocity. A high superficial gas velocity and low solid holdup are favorable for increased uniformity of the radial profile of the gas holdup and bubble rise velocity. Hydrodynamic models that predict the gas holdup and suspension circulation velocity were developed for an ALSR with and without a resistance-regulating element. Good agreement was obtained between measured and predicted values.  相似文献   

4.
The hydrodynamic behavior of an external loop airlift slurry reactor (ALSR) with and without a resistance-regulating element was studied with a fiber optic probe and ultrasound Doppler velocimetry. The influences of the superficial gas velocity and solid holdup on the global gas holdup and radial profiles of the suspension circulation velocity in the downer and of gas holdup, bubble size, and bubble rise velocity in the riser were studied. Local measurements allow a better understanding of the flow behavior in the reactor and can be used for CFD modeling and validation. Experimental results show that the resistance-regulating element increases the gas holdup and decreases the suspension circulation velocity, indicating that an optimum design of the flow resistance is needed to obtain the maximum gas-liquid volumetric mass transfer coefficient for a specific superficial gas velocity. A high superficial gas velocity and low solid holdup are favorable for increased uniformity of the radial profile of the gas holdup and bubble rise velocity. Hydrodynamic models that predict the gas holdup and suspension circulation velocity were developed for an ALSR with and without a resistance-regulating element. Good agreement was obtained between measured and predicted values.  相似文献   

5.
This work presents experimental data on gas holdup in slurry bubble columns with a foaming liquid. The effects of solids concentration, solid particle size, superficial phase velocities and column dimensions on the gas holdup are analyzed. At low superficial gas velocities (less than 4cm/s), for which the liquid does not foam, the presence of solids with small particle size does not affect the gas holdup whereas solids with large particle size induce foam formation and thus their presence increases the gas holdup. In the foaming regime, an increase of solids concentration decreases the gas holdup. The operating mode has a strong effect on the gas holdup: the semi-batch operating mode (stagnant liquid-solid suspension) increases the ability of the liquid to foam with respect to the continuous mode. Regarding the effect of column dimensions, the results presented show that the height of the bubble column does not affect at an appreciable extent the gas holdup in the range 6 < LID < 12. At high gas velocities (greater than 6 cm/s) the gas holdups obtained in a 30 cm-internal diameter column are the same as those measured in a 10 cm-internal diameter column.  相似文献   

6.
The distribution of gas holdup, the rise velocity of gas bubble swarm and the Sauter mean bubble size are estimated with a small diameter laboratory scale bubble column using electrical resistance tomography (ERT). The theory of gas disengagement based on ERT methods has been developed for estimations of bubble size and bubble rise velocity. The gas holdups of large bubble swarm and small bubble swarm, the distribution of both bubble size are derived through the analysis of gas disengagement based on the differences of the rise velocity of bubble swarm at the cross-section imaged by electrical resistance tomography. Experimental results are in very good agreement with correlations and conventional estimation obtained using pressure transmitter methods. The proposed methodology can be also used as an analysis tool for quantifying and optimizing the performance of other types of complex reaction systems.  相似文献   

7.
One of the greatest challenges in the characterization of bubbles in a bubble column has been the prediction of the bubble diameter and the gas holdup. In this study a novel technique for predicting the mean bubble diameter and the local gas holdup using a non‐invasive ultrasonic method with neural network was investigated. The measurement parameters of the energy attenuation and the transmission time difference of ultrasound are used to obtain the mean bubble diameter and the local gas holdup in an air‐water dispersion system using neural network reconstruction. Bubble size distributions in a 2‐D bubble column are obtained experimentally by using a photographic method. An adequate selection of the neural network structure has been carried out to represent the training data. The representative results using the present structure show good agreement with the measured data.  相似文献   

8.
A gas holdup model is developed for cocurrent air-water-fiber bubble column flows using the drift-flux model. The model coefficients are estimated using a nonlinear least square method and systematically acquired experimental data. The model correlates gas holdup with superficial gas and liquid velocity, and fiber type and mass fraction. The model reproduces most experimental data within ±10% error and all but 3 of the 3839 experimental data points within ±15% error. It also accurately predicts air-water bubble column gas holdup data; these data were not used in estimating the model coefficients. The physical implications of the model coefficients are also discussed.  相似文献   

9.
The laser Doppler anemometer (LDA) and conductivity probes were used for measuring the local hydrodynamic performances such as gas holdup and liquid velocity in a lab-scale gas–liquid–TiO2 nanoparticles three-phase bubble column. Effects of operating parameters on the local gas holdup and liquid velocity were investigated systematically. Experimental results showed that local averaged axial liquid velocity and local averaged gas holdup increased with increasing superficial gas velocity but decreased with increasing TiO2 nanoparticles loading and the axial distance from the bottom of the bubble column. A three-dimensional computational fluid dynamic (CFD) model was developed in this paper to simulate the structure of gas–liquid–TiO2 nanoparticles three-phase flow in the bubble column. The time-averaged and time-dependent predictions were compared with experimental data for model validation. A successful prediction of instantaneous local gas holdup, gas velocity, and liquid velocity were also presented.  相似文献   

10.
A simple model based on an energy balance which takes into account the friction losses at the gas-liquid interface and the slip velocity of single bubble is used to simulate the gas holdup in bubble columns containing Newtonian and non-Newtonian liquids which circulate in both laminar and turbulent flows. Experimental data available from the literature for bubble columns up to 7 m height and 1 m diameter with water and glycerol as Newtonian liquids and different solutions of CMC in a wide range of concentrations as non-Newtonian liquids are simulated with good agreement despite the simplifications made to describe the gas liquid flow regimes. Most of the differences between experimental and calculated gas holdup are justified on the basis of the simplifying assumptions.  相似文献   

11.
Local hydrodynamics of a gas–liquid–solid system,such as bubble circulation regime,gas holdup,liquid velocity and axial profile of solid concentration,are studied in a two-stage internal loop airlift reactor.Empirical correlations for gas holdup and liquid velocity are proposed to ease the reactor design and scale-up.Different bubble circulation regimes were displayed in the first(lower) and second(upper) stages.Increasing superficial gas velocity and solid loading can promote regime transition of the second stage,and the gas holdup of the second stage is higher than that of the lower stage.In addition,the effects of solid loading on bubble behaviour are experimentally investigated for each stage.It is found that bubble size in the downcomer decreases with the presence of solid particles,and bubble size distribution widens under higher superficial gas velocity and lower solid loading.  相似文献   

12.
Precise measurement of gas-liquid interfacial surface area is essential to reactor design and operation. Mass transfer from the gas phase to the liquid phase is often a key feature that controls the overall process. Measurement of gas-liquid interfacial area is often made through a separate measurement of the gas holdup and bubble size with complex and/or sophisticated methods. In this work, an inexpensive method is presented for the simultaneous determination of both local gas holdup and bubble diameter. The method is based on the withdrawal of the air-liquid dispersion under non-isokinetic conditions and on bubble counting via a simple optical device. The method was calibrated in a bubble column with several withdrawal pressures using coalescing and non-coalescing media. During the same calibration experiment, gas holdup was also measured manometrically and individual bubble diameters were measured by a photographic method. With a vacuum pressure of 3 kPa, local interfacial area measured with the withdrawal method produced a relative error below 13%, compared to the manometric/photographic method. The method was then used to characterize local specific interfacial area in a bubble column under several operating conditions with coalescing and non-coalescing media. In coalescing media and with superficial gas velocities (vg) from 0.25 to 3.5 cm/s, the average interfacial area ranged from 17 to . With non-coalescing media the average interfacial area ranged from 40 to . Under the test condition it was observed that gas holdup is a parameter that has a greater distribution (standard deviation from 30% to 70%) than the volume-mean bubble diameter (standard deviation from 6% to 12%). It is shown that a model previously developed for characterizing gas holdup homogeneity is also suitable for characterizing interfacial area homogeneity.  相似文献   

13.
Time-dependent gas holdup variation in a two-phase bubble column is reported with air and tap water as the working fluids. The results indicate that time-dependent gas holdup is closely related to the water, whose quality is unsteady and changes, not only during the two-phase flow, but also during idle periods. The significance and characteristics of the time-dependent gas holdup variation are influenced by the bubble column operation mode (cocurrent or semi-batch), the sparger orientation, the superficial gas velocity, and the superficial liquid velocity. It is proposed that a volatile substance (VS), which exists in the water in very small concentrations and inhibits bubble coalescence, evaporates during column operation and results in a time-dependent gas holdup. The influence of bubble column operation mode, sparger orientation, superficial gas velocity, and superficial liquid velocity on the time-dependent gas holdup variation are explained based on their effects on bubble size, bubble contacting frequency and mixing intensity. This work reveals that regular tap water may cause significant reproducibility problems in experimental studies of air-water two-phase flows.  相似文献   

14.
This paper investigates the effect of sparger geometry on flow regime of a bubble column. The experiments presented in this study were performed under atmospheric pressure with water/air in a cylindrical Plexiglas® column of 33.0 cm i.d. and 3.0 m height. Three different perforated plate spargers were employed. Hole diameter was varied in the range of 1–3 mm, while the free area was 1.0%.The theory of linear stability is used for the prediction of regime transitions in the bubble column and a comparison has been presented between the predictions and the experimental observations. A good agreement between the predictions and the experimental values of transition gas holdup has been obtained.In addition, the data from the literature has been analyzed. Experimental values of transition gas holdups and predictions by the theory of linear stability have been compared with those of literature.A correlation based on dimensionless numbers (Archimedes, Froude, Eötvös and Weber) and the group (do/DC) for the prediction of gas holdup in homogeneous regime is proposed. The average error between the correlation predictions and experimental values remains under ±10%.The proposed correlation is compared with the published data and found to be in fairly good agreement.  相似文献   

15.
The local hydrodynamic properties in a multi‐stage internal loop airlift reactor were investigated in this study. The gas‐liquid two‐phase flow hydrodynamic properties, including gas holdup, bubble velocity, bubble diameter, and liquid circulation velocity at various stages were measured by dual electrical resistivity probes and conductivity cells. Detailed studies on the gas holdup, bubble velocity, bubble diameter, and liquid circulation velocity were conducted with respect to various values of superficial gas. The Zuber and Findlay drift flux model was used to represent the variation of slip velocity with total gas‐liquid velocity at various stages and the model fits the data well.  相似文献   

16.
Local gas holdup, bubble diameter and bubble rise velocity in the nitrogen/Drakeol-10 oil system were measured at both laboratory (ambient temperature and pressure) and industrially relevant (high temperature and pressure) conditions using a dual conductivity probe in a slurry-bubble-column reactor. It was found that a constant superficial velocity, the Sauter mean bubble diameter decreases with increasing pressure and temperature. The bubble rise velocity significantly decreases as the pressure increases. Large bubbles rise faster than smaller bubbles. Akita and Yoshida's correlation [1] was utilized to compute the bubble size. Predicted values agree with the experimental data at high temperature.  相似文献   

17.
Kai Zhang  Nana Qi  Chunxi Lu 《Fuel》2010,89(7):1361-95
As modified three-phase fluidized reactors, loop reactors have been widely used in the area of chemical and energy processes. An external slurry circulation is introduced into a traditional internal loop reactor to improve the transfer between gas and slurry phases. Gas holdup and bubble dynamics are investigated by using the double-sensor conductivity probe technique in the present work. The results show that gas holdup inside the draft tube is greatly affected by the geometrical configuration and is much higher than that in the corresponding section of the annular region. Local, section-averaged, and overall gas holdups increase with increasing superficial gas velocity, while the effects of solid loading and external slurry circulation velocity are less significant than that of superficial gas velocity. Both local bubble size and bubble rise velocity vary significantly in different regions.  相似文献   

18.
Gas-liquid mass transfer in a bubble column in both the homogeneous and heterogeneous flow regimes was studied by numerical simulations with a CFD-PBM (computation fluid dynamics-population balance model) coupled model and a gas-liquid mass transfer model. In the CFD-PBM coupled model, the gas-liquid interfacial area a is calculated from the gas holdup and bubble size distribution. In this work, multiple mechanisms for bubble coalescence, including coalescence due to turbulent eddies, different bubble rise velocities and bubble wake entrainment, and for bubble breakup due to eddy collision and instability of large bubbles were considered. Previous studies show that these considerations are crucial for proper predictions of both the homogenous and the heterogeneous flow regimes. Many parameters may affect the mass transfer coefficient, including the bubble size distribution, bubble slip velocity, turbulent energy dissipation rate and bubble coalescence and breakup. These complex factors were quantitatively counted in the CFD-PBM coupled model. For the mass transfer coefficient kl, two typical models were compared, namely the eddy cell model in which kl depends on the turbulent energy dissipation rate, and the slip penetration model in which kl depends on the bubble size and bubble slip velocity. Reasonable predictions of kla were obtained with both models in a wide range of superficial gas velocity, with only a slight modification of the model constants. The simulation results show that CFD-PBM coupled model is an efficient method for predicting the hydrodynamics, bubble size distribution, interfacial area and gas-liquid mass transfer rate in a bubble column.  相似文献   

19.
Gas dispersion in a double turbine stirred tank is experimentally characterised by measuring local gas holdups and local bubble size distributions throughout the tank, for three liquid media: tap water, aqueous sulphate solution and aqueous sulphate solution with PEG. For all these media, bubble coalescence generally prevails over breakage. Where average bubble size decreases, this can be attributed to the difference in slip velocity between different sized bubbles. Most of the coalescence takes place in the turbine discharge stream.A compartment model that takes into account the combined effect of bubble coalescence and breakage is used to simulate gas dispersion. The model predicts spatial distribution of gas holdup and of average bubble size, with average bubble size at the turbines as an input. Reasonable agreement between experiment and simulation is achieved with optimisation of two parameters, one affecting mainly the slip velocity, the other related mainly to the bubble coalescence/breakage balance. Different sets of parameters are required for each of the three liquid systems under study, but are independent of stirring/aeration conditions. The model only fails to simulate the smaller average bubble diameters at the bottom of the tank.  相似文献   

20.
X-ray computed tomography (CT) is used to explore the differences in a semi-batch bubble column operated at superficial gas velocities of Ug=3, 10, and 18 cm/s. Air-water or air-water-cellulose fiber systems comprise the multiphase flow, and the bubble column has a 32.1 cm internal diameter. A CT image of a phantom object composed of several air-filled tubes immersed in water is used to identify several characteristic features of the X-ray CT system. CT images are then compared between air-water and air-water-cellulose fiber systems. When the fiber mass fraction is 0.1%, gas holdup is slightly higher than that of the air-water system in the column center and near the column wall. In 1.0% cellulose fiber slurries, gas holdup is lower than that of air-water results at all radial positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号